Nutrient content in macrophytes in Spanish shallow lakes

  • Margarita Fernández-Aláez
  • Camino Fernández-Aláez
  • Eloy Bécares
Part of the Developments in Hydrobiology book series (DIHY, volume 143)


The concentrations of N, P and C in the above-ground biomass of 14 dominant macrophyte species in shallow lakes in N.W. Spain were measured. The plants included macroalgae, aquatic (submerged and floating leaved) and emergent angiosperms. Significant differences among the species and among the groups of macrophytes were observed for the three nutrients. The macroalgae showed the lowest P (0.053% dry weight) and C (35.24% dry weight) content, whilst an impoverishment in N (1.38% dry weight) was observed in the emergent species. Only the macroalgae showed a strong association between N and P (r = 0.743, p<0.0001), reflecting an important biochemical connection in these species. A negative relation was observed between N and C (r s = −0.711, p<0.0001) as a result of the change pattern exhibited by these nutrients in the tissues of aquatic and emergent angiosperms. The existence of N limitation of growth of both angiosperm groups, with a content below critical level, was deduced. P was established as the limiting factor of all the macrophyte groups (N:P = 35:1), especially macroalgae, in which it was below the critical minimum.

Key words

nutrient accumulation macroalgae aquatic angiosperms emergent angiosperms shallow lakes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atkinson, M. J. & S. V. Smith, 1984. C:N:P ratios of benthic marine plants. Limnol. Oceanogr. 28: 568-574.CrossRefGoogle Scholar
  2. Barko, J. W. & R. M. Smart, 1986. Sediment related mechanisms of growth limitation in submerged macrophytes. Ecology 67: 1328-1340.CrossRefGoogle Scholar
  3. Bernatowicz, S., 1969. Macrophytes in the Lake Warniak and their chemical composition. Ekol. Polska 17: 447-467.Google Scholar
  4. Blindow, I., 1992. Long-and short-term dynamics of submerged macrophytes in two shallow eutrophic lakes. Freshwat. Biol. 28: 15-27.CrossRefGoogle Scholar
  5. Boston, H. L. & M. S. Adams, 1987. Productivity, growth and photosynthesis of two small ‘isoetid’ plants, Littorella uniflora and Isoetes macrospora. J. Ecol. 75: 333.CrossRefGoogle Scholar
  6. Boyd, C. E., 1978. Chemical composition of wetland plants. In Good R. E., D. F. Whigham & R. L. Simpson (eds), Freshwater Wetlands: Ecological Processes and Management Potential. Proceedings of the Symposium Freshwater Marshes: Present Status. Future Needs, New Brunswick, New Jersey. U.S. Environmental Protection Agency, The State University & Rider College, Rutgers: 155 - 167.Google Scholar
  7. Bristow, J. M., 1975. The structure and function of roots in aquatic vascular plants. In Torrey, J. G. & D. T. Clarkson (eds), The Development and Function of Roots. Academic Press, New York: 221 - 236.Google Scholar
  8. Denny, P., 1987. Mineral cycling by wetland plant — a review. In Pokorný, J., O. Lhotský, P. Denny & E. G. Turner (eds), Waterplants and Wetland Processes. Arch Hydrobiol. Beih. Ergebn. Limnol: 27: 1 - 25.Google Scholar
  9. Duarte, C. M., 1992. Nutrient concentration of aquatic plants: Patterns across species. Limnol. Oceanogr. 37: 882-889.Google Scholar
  10. Dykyjová, D., 1973. Content of mineral macronutrients in emergent macrophytes during their seasonal growth and descomposition. In Hejny, S. (ed.), Ecosystem Study on Wetland Biome in Czechoslovakia, Czechoslovakian IBP/PT-PP Report 3. Trebon. Czechoslovakian Academy of Science: 163.Google Scholar
  11. Fernández-Aláez, M, 1996. Estudio de la evolución de los humedales de la Meseta y Páramo leoneses. Propuesta para su recuperación y conservación. Proyecto de Investigación subvencionado por la Junta de Castilla y Leon. Informe Final. Referencia: LE 30.Google Scholar
  12. Fernández-Aláez, M., C. Fernandez-Alaez & E. Bécares, 1998. Macrophytes of drainage channels in ‘The Paramo’ (Leon, Spain): Biomass and nutrient content. Verh int. Ver. Limnol. 26: 1012 - 1015.Google Scholar
  13. Fraser, D., E. R. Chavez & J. E. Paloheimo, 1984. Aquatic feeding by moose: selection of plant species and feeding areas in relation to plant chemical composition and characteristics of lakes. Can. J. Zool. 62: 80-87.CrossRefGoogle Scholar
  14. Fujita, R. M., P. A. Wheeler & R. L. Edwards, 1989. Assessment of macroalgal nitrogen limitation in a seasonal upwelling region. Mar. Ecol. Prog. Ser. 53: 293-303.CrossRefGoogle Scholar
  15. Furtado, A. L. S. 1998. Ash free dry weight, organic carbon, nitrogen and phosphorus content of Thypa domingensis Pers. (Thyphaceae), and aquatic macrophyte. Verh int. Ver. Limnol. 26: 1842-1845.Google Scholar
  16. Gaudet, J. J., 1977. Uptake, accumulation and loss of nutrients by papyrus in tropical swamps. Ecology 58: 415 - 422.CrossRefGoogle Scholar
  17. Gerloff, G. C. & P. H. Krombholz, 1966. Tissue analysis as a measure of nutrient availability for the growth of angiosperm aquatic plants. Limnol. Oceanogr. 11: 529-537.CrossRefGoogle Scholar
  18. Gerloff, G. C., 1969. Evaluating nutrient supplies for the growth of aquatic plants in natural waters. In Eutrophication: Causes, Consequences, Correctives, International Symposium on Eutrophication, University of Wisconsin, Madison, 1967. Washington, DC: National Academy of Sciences: 536 - 555.Google Scholar
  19. Ho, Y. B., 1979. Chemical composition studies on some aquatic macrophytes in three Scottish lochs. I. Chlorophyll, ash, carbon, nitrogen and phosphorus. Hydrobiologia 63: 161.Google Scholar
  20. Howard Williams, C. & W. J. Junk, 1977. The chemical composition of Central Amazonian aquatic macrophytes with special reference to their role in the ecosystem. Arch. Hydrobiol. 79: 446-464.Google Scholar
  21. Hutchinson, G. E., 1975. A treatise on limnology, 3. Limnological Botany. Wiley & Sons, New York: 660 pp.Google Scholar
  22. Jackson, L. J. & J. Kalif, 1993. Patterns in metal content of submerged aquatic macrophytes: the role of plant growth form. Freshwat. Biol. 29: 351-359.CrossRefGoogle Scholar
  23. Kadlec, R. H. & R. L. Knight, 1996. Treatment wetlands. Lewis Publishers, Boca Raton, Florida: 893 pp.Google Scholar
  24. Kaul, V., C. L. Trisal & S. Kaul, 1980. Mineral removal potential of some macrophytes in two lakes of Kashmir. J. Indian Bot. Soc. 59: 108.Google Scholar
  25. Klopatek, J. M., 1978. Nutrient dynamics of freshwater riverine marshes and the role of emergent macrophytes. In Good, R. E., D. F. Whigham & R.L.Simpson (eds), Freshwater Wetlands: Ecological Processes and Management Potential. Academic Press, New York, London: 195 - 216.Google Scholar
  26. Lampert, W. & U. Sommer, 1997. Limnoecology: The ecology of lakes and streams. Oxford University Press, New York, Oxford: 370 pp.Google Scholar
  27. Lapointe, B. E. & J. O’Connell, 1989. Nutrient-enhanced growth of Cladophora prolifera in Harrington Sound, Bermuda: Eutrophication of a confined, phosphorus-limited marine ecosystem. Estuar. Coast Shelf Sci. 28: 347-360.CrossRefGoogle Scholar
  28. Lindsay, W. L., 1979. Chemical Equilibria in soils, John Wiley and Sons, New York: 449 pp.Google Scholar
  29. McJannet, C. L., P. A. Keddy & F. R. Pick, 1995. Nitrogen and phosphorus tissue concentration in 41 wetland plants: a comparison across habitats and functional groups. Function. Ecol. 9: 231-238.CrossRefGoogle Scholar
  30. Nielsen, S. L.& K. Sand-Jensen, 1990. Allometric scaling of maximal photosynthetic growth rate to surface/volume ratio. Limnol. Oceanogr. 35: 177-180.Google Scholar
  31. Pieczynska, E., 1990. Lentic aquatic-terrestrial ecotones: their structure, functions, and importance. In Naiman R. J. & H. Décamps (eds), The Ecology and Management of Aquatic-Terrestrial Eco-tones. Man and The Biosphere Series. The Parthenon Publishing Group, Paris: 103 - 140.Google Scholar
  32. Riemer, D. N. & S. J. Toth, 1968. A survey of the chemical composition of aquatic plants in New Jersey. New Jersey Agriculture Experiment Station Bulletin 820: 1 - 3.Google Scholar
  33. Ryding, S.-O. & W. Rast, 1992. El control de la eutrofización en lagos y pantanos. Ediciones Piramide. Madrid: 375 pp.Google Scholar
  34. Sand-Jensen, K. & J. Borum, 1991. Interactions among phytoplankton, periphyton and macrophytes in temperate freshwaters and estuaries. Aquat. Bot. 41: 137.Google Scholar
  35. Seidel, K., 1966. Reinigung von Gewässern durch höhere Pflanzen. Naturwissenschaften 53: 289.PubMedCrossRefGoogle Scholar
  36. Shardendu & R. S. Ambasht, 1991. Relationship of nutrient in water with biomass and nutrient accumulation of submerged macrophytes of a tropical wetland. New Phytol. 117: 493 - 500.CrossRefGoogle Scholar
  37. Straskraba, M., 1968. Der Anteil der höheren Pflanzen an der Produktion der stehenden Gewässer. Mitt. Int. Ver. Limnol. 14: 212-230.Google Scholar
  38. Tilman, D., 1982. Resource competition and community structure. Princeton University Press, Princeton, New Jersey: 269 pp.Google Scholar
  39. Vymazal, J., 1995. Algae and element cycling in wetlands. Lewis Publishers, Boca Raton, Florida: 689 pp.Google Scholar
  40. Walker, D. R., M. D. Flora, R. G. Rice & D. J. Scheidt, 1988. Response of the Everglades Marsh to Increased Nitrogen and Phosphorus Loading. Part II: Macrophyte Community Structure and Chemical Composition. Report to the Superintendent Everglades National Park, Homestead, Florida.Google Scholar
  41. Westlake, D. F., 1965. Some basic data for investigations of the productivity of aquatic macrophytes. Mem. Ist. ital. Idrobiol. 18 (Suppl.): 229 - 248.Google Scholar
  42. Westlake, D. F., 1980. Primary production. In Le Cren E. D. & R. H. Lowe-McConell (eds), The Functioning of Freshwater Ecosystems. International Biological Programme 22. Cambridge University Press, Cambridge: 141 - 246.Google Scholar
  43. Zimba, P. V., M. S. Hopson & D. E. Colle, 1993. Elemental composition of five submerged aquatic plants collected from lake Okeechobee, Florida. J. Aquat. Plant Mgmt. 31: 137-140.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Margarita Fernández-Aláez
    • 1
  • Camino Fernández-Aláez
    • 1
  • Eloy Bécares
    • 1
  1. 1.Department of EcologyUniversity of LeónLeónSpain

Personalised recommendations