The effect of aquatic vegetation on turbidity; how important are the filter feeders?

  • Marten Scheffer
Part of the Developments in Hydrobiology book series (DIHY, volume 143)


A review of the literature suggests that aquatic macrophytes can enhance water clarity and reduce phytoplankton biomass through shading, reduction of nutrient availability, excretion of allelopathic substances and reduction of resuspension. In addition, vegetation fields are reported to enhance grazing on phytoplankton by providing a daytime refuge against fish predation for planktonic filter feeders such as Daphnia and by providing a suitable habitat for macrophyte associated filter feeders such as Sida crystallina, Eurycercus lamellatus and Simocephalus velutus. I use a graphical and a simple mathematical model to explore how top-down control by these grazers may interact with the effect of reduced phytoplankton production due to the other factors mentioned. The analysis suggests that grazing tends to be an all-or-none effect, driving phytoplankton to a very low biomass once a certain threshold level of grazing pressure is exceeded. This threshold level is predicted to increase with the productivity of the phytoplankton. Thus, the model suggests that, in plant beds, productivity reducing factors such as shading and reduced nutrient concentrations can pave the way for top-down control of phytoplankton even by a relatively moderate population of filter-feeders, and that phytoplankton biomass will decrease sharply beyond a critical macrophyte (or grazer) density. Indeed such a discontinuous response is observed in field experiments. Also, the idea that filter feeding cladocerans such as Daphnia play a key role is in line with the observation that brackish lakes where Daphnia does not thrive tend to be turbid despite the often dense weed beds.

Key words

macrophytes turbidity phytoplankton zooplankton nutrients phosphorus model grazing top-down control 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anthoni, U., C. Christophersen, J. O. Madsen, S. Wium-Andersen & N. Jacobsen, 1980. Biologically active sulfur compounds from the green alga Churn,lobularis. Phytochemistry 19: 1228 – 1229.CrossRefGoogle Scholar
  2. Bales, M., B. Moss, G. Phillips, K. Irvine & J. Stansfield, 1993. The changing ecosystem of a shallow brackish lake Hickling Broad Norfolk U.K. II. Long-term trends in water chemistry and ecology and their implications for restoration of the lake. Freshwater Biol. 29: 141 – 165.Google Scholar
  3. Barko, J. W. & W. F. James, 1998. Effects of submerged aquatic macrophytes on nutrient dynamics, sedimentation and resuspension. Structuring Role of Submerged Macrophytes in Lakes 131: 197 – 214.CrossRefGoogle Scholar
  4. Canfield, D. E. J., J. V. Shireman, D.E. Colle & Haller, 1984. Prediction of chlorophyll a concentrations in Florida lakes importance of aquatic macrophytes. Can. J. Fish. aquat. Sci. 41: 497 – 501.CrossRefGoogle Scholar
  5. Chambers, P. A. & J. Kalff, 1985. The influence of sediment composition and irradiance on the growth and morphology of Myriophyllum spicatum. Aquat. Bot. 22: 253 – 264.CrossRefGoogle Scholar
  6. Chigbu, P. & T. H. Sibley, 1994. Relationship between abundance, growth, egg size and fecundity in a landlocked population of longfin smelt, Spirinchus thaleichthys. J. Fish Biol. 45: 1 – 15.CrossRefGoogle Scholar
  7. Davies, J., 1985. Evidence for a diurnal horizontal migration in Daphnia hyalina lacustris. Hydrobiologia 120: 103 – 106.CrossRefGoogle Scholar
  8. Dieter, C. D., 1990. The importance of emergent vegetation in reducing sediment resuspension in wetlands. J. Freshwat. Ecol. 5: 467 – 474.CrossRefGoogle Scholar
  9. Faafeng, B. A. & M. Mjelde, 1998. Clear and turbid water in shallow Norwegian lakes related to submerged vegetation. Structuring Role of Subbmerged Macrophytes in Lakes 131: 361 – 368.CrossRefGoogle Scholar
  10. Forsberg, C., S. Kleiven & T. Willen, 1990. Absence of allelopathic effects of Chara on phytoplankton in situ. Aquat. Bot. 38: 289 – 294.CrossRefGoogle Scholar
  11. Godmaire, H. & D. Planas, 1983. Potential effect of Myriophyllum spicatum on the primary production of phytoplankton. In Anonymous (ed.), Periphyton of Freshwater Ecosystems. Dr. W. Junk Publishers. 227 – 232.Google Scholar
  12. Goulder, R., 1969. Interactions between the rates of production of a freshwater macrophyte and phytoplankton in a pond. Oikos 20: 300 – 309.CrossRefGoogle Scholar
  13. Gross, E. M. & R. Sütfeld, 1994. Polyphenols with algicidal activity in the submerged macrophyte Myriophyllum spicatum L. Acta Horticultura 381: 710 – 716.Google Scholar
  14. Hasler, A. D. & E. Jones, 1949. Demonstration of the antagonistic action of large aquatic plants on algae and rotifers. Ecology 30: 346 – 359.CrossRefGoogle Scholar
  15. Hootsmans, M. J. M. & A. W. Breukelaar, 1990. De invloed van waterplanten op de groei van algen. H2O 23: 264 – 266.Google Scholar
  16. Houthuijzen, R. P., J. J. G. M. Backx & A. D. Buijse, 1993. Exceptionally rapid growth and early maturation of perch in a freshwater lake recently converted from an estuary. J. Fish Biol. 43: 320 – 324.CrossRefGoogle Scholar
  17. Hutchinson, G. E., 1975. A Treatise on Limnology. Volume III, Limnological Botany. John Wiley & Sons. New York.Google Scholar
  18. Ikusima, I., 1970. Ecological studies on the productivity of aquatic plant communities IV. Light condition and community photosynthetic production. Botanical Magazine Tokyo 83: 330 – 341.Google Scholar
  19. Irvine, K., B. Moss & J. Stansfield, 1990. The potential of artificial refugia for maintaining a community of large-bodied Cladocera against fish predation in a shallow eutrophic lake. Hydrobiologia 200–201: 379 – 390.CrossRefGoogle Scholar
  20. Jackson, H. O. & W. C. Starrett, 1959. Turbidity and sedimentation at Lake Chautauqua, Illinois. J. Wildlife Mgmt 23: 157 – 168.CrossRefGoogle Scholar
  21. James, W. F. & J. W. Barko, 1990. Macrophyte influences on the zonation of sediment accretion and composition in a north-temperate reservoir. Arch. Hydrobiol. 120: 129 – 142.Google Scholar
  22. Jasser, I., 1995. The influence of macrophytes on a phytoplankton community in experimental conditions. Hydrobiologia 306: 2132.CrossRefGoogle Scholar
  23. Jeppesen, E., J. P. Jensen, P. Kristensen, M. Sondergaard, E. Mortensen, O. Sortkjaer & K. Olrik, 1990. Fish manipulation as a lake restoration tool in shallow, eutrophic, temperate lakes 2: threshold levels, long-term stability and conclusions. Hydrobiologia 200 /201: 219 – 228.CrossRefGoogle Scholar
  24. Jeppesen, E., J. P. Jensen, M. S¢ndergaard, T. L. Lauridsen, L. J. Pedersen & L. Jensen, 1996. Top-down control in freshwater lakes with special emphasis on the role of fish, submerged macrophytes and water depth. Hydrobiologia -in pressGoogle Scholar
  25. Jeppesen, E., T. L. Lauridsen, T. Kairesalo& M. R. Perrow, 1998. Impact of submerged macrophytes on fish-zooplankton interactions in lakes. Structuring Role of Subbmerged Macrophytes in Lakes 131: 91 – 114.CrossRefGoogle Scholar
  26. Jeppesen, E., M. Spndergaard, J. P. Jensen, E. Kanstrup & B. Pedersen, 1997. Macrophytes and turbidity in brackish lakes, with special emphasis on the role of top-down control. In Jeppesen, E. et al. (eds), The Structuring Role of Submerged Macrophytes in Lakes. Springer Verlag.Google Scholar
  27. Jeppesen, E., M. SWndergaard, E. Kanstrup & B. Petersen, 1994. Does the impact of nutrients on the biological structure and function of brackish and freshwater lakes differ. Hydrobiologia 276: 15 – 30.CrossRefGoogle Scholar
  28. Jones, R. C., 1990. The effect of submersed aquatic vegetation on phytoplankton and water quality in the tidal freshwater Potomac River U.S.A. J. Freshwat. Ecol. 5: 279 – 288.CrossRefGoogle Scholar
  29. Kairesalo, T., R. Kornijow & E. Luokkanen, 1997. Trophic cascade structuring a plankton community in a strongly vegetated lake littoral. In Jeppesen, E. et al. (eds), The Structuring Role of Submerged Macrophytes in Lakes. Springer-Verlag. in prep.Google Scholar
  30. Kogan, Sh. I. & G. A. Chinnova, 1972. Relations between Ceratophyllum demersum and some blue-green algae. Hydrobiol. J. ( Engl.Transl.Gidrobiol.Zh ). 8: 14 – 19.Google Scholar
  31. Kufel, L. & T. Ozimek, 1994. Can Chara control phosphorus cyc- ling in Lake Luknajno (Poland)? Hydrobiologia 276: 277 – 283.CrossRefGoogle Scholar
  32. Lauridsen, T. L. & I. Buenk, 1996. Diel changes in the horizontal distribution of zooplankton in the littoral zone of two shallow eutrophic lakes. in prep.Google Scholar
  33. Lauridsen, T. L., E. Jeppesen, M. Sondergaard & D. M. Lodge, 1998. Horizontal migration of zooplankton: predator-mediated use of macrophyte habitat. Structuring Role of Subbmerged Macrophytes in Lakes 131: 233 – 239.CrossRefGoogle Scholar
  34. Lauridsen, T. L., L. J. Pedersen, E. Jeppesen & M. Sondergaard, 1996. The importance of macrophyte bed size for cladoceran composition and horizontal migration in a shallow lake. in prep.Google Scholar
  35. Ligtvoet, W. & S. A. De Jong, 1995. Ecosystem development in Lake Volkerak-Zoom: concept and strategy. Wat. Sci. Technol. 31: 239 – 243.Google Scholar
  36. Ligtvoet, W. & M. P. Grimm, 1992. Fish in clear water - Fish-stock development and management in Lake Volkerak/Zoom. Proc. Inform. CHO-TNO 46: 69 – 84.Google Scholar
  37. Mjelde, M. & B. A. Faafeng, 1997. Ceratophyllum demersum hampers phytoplankton development in some small Norwegian lakes over a wide range of phosphorus concentrations and geographical latitude. Freshwat. Biol. 37: 355 – 365.CrossRefGoogle Scholar
  38. Moore, B. C., W. H. Funk & E. Anderson, 1994. Water quality, fishery & biologic characteristics in a shallow, eutrophic lake with dense macrophyte populations. Lake Reserv. Mgmt 175 – 188.Google Scholar
  39. Moss, B., 1994. Brackish and freshwater shallow lakes - Different systems or variations on the same theme. Hydrobiologia 276: 114.Google Scholar
  40. Moss, B., J. Stansfield & K. Irvine, 1990. Problems in the restoration of a hypertrophie lake by diversion of a nutrient-rich inflow. Verh. int. Ver. Theor. Angew. Limnol. 24: 568 – 572.Google Scholar
  41. Noy-Meir, I. 1975. Stability of grazing systems an application of predator prey graphs. J. Ecol. 63: 459 – 482.CrossRefGoogle Scholar
  42. Paterson, M., 1993. The distribution of microcrustacea in the littoral zone of a freshwater lake. Hydrobiologia 263: 173 – 183.CrossRefGoogle Scholar
  43. Paterson, M. J., 1994. Invertebrate predation and the seasonal dynamics of microcrustacea in the littoral zone of a fishless lake. Arch. Hydrobiol. 1 – 36.Google Scholar
  44. Perrow, M. R., B. Moss & J. Stansfield, 1994. Trophic interactions in a shallow lake following a reduction in nutrient loading - a long-term study. Hydrobiologia 276: 43 – 52.CrossRefGoogle Scholar
  45. Petticrew, E. L. & J. Kalff, 1992. Water flow and clay retention in submerged macrophyte beds. Can. J. Fish. aquat. Sci 49: 2483 – 2489.Google Scholar
  46. Pokorny, J., J. Kvet, J. P. Ondok, Z. Toul & I. Ostry, 1984. Production-ecological analysis of a plant community dominated by Elodea canadensis. Aquat. Bot. 19: 263 – 292.CrossRefGoogle Scholar
  47. Quade, H. W., 1969. Cladoceran faunas associated with aquatic macrophytes in some lakes in northwestern Minnesota. Ecology 50: 170 – 179.CrossRefGoogle Scholar
  48. Scheffer, M., 1990. Multiplicity of stable states in freshwater systems. Hydrobiologia 200 /201: 475 – 486.CrossRefGoogle Scholar
  49. Scheffer, M., 1998. Ecology of Shallow Lakes. 1: Chapman and Hall. London 0 – 357.Google Scholar
  50. Scheffer, M., A. H. Bakema & F. G. Wortelboer, 1993. MEGA-PLANT - a simulation model of the dynamics of submerged plants. Aquat. Bot. 45: 341 – 356.CrossRefGoogle Scholar
  51. Scheffer, M. & R. J. De Boer, 1995. Implications of spatial heterogeneity for the paradox of enrichment. Ecology 76: 2270 – 2277.CrossRefGoogle Scholar
  52. Scheffer, M. & E. Jeppesen, 1998. Alternative stable states. Structuring Role of Subbmerged Macrophytes in Lakes 131: 397 – 406.Google Scholar
  53. Scheffer, M., S. Rinaldi, A. Gragnani, L. R. Mur & E. H. Van Nes, 1997. On the dominance of filamentous cyanobacteria in shallow turbid lakes. Ecology 78: 272 – 282.CrossRefGoogle Scholar
  54. Scheffer, M., M. Van den Berg, A. W. Breukelaar, C. Breukers, H. Coops, R. W. Doef & M.-L. Meijer, 1994. Vegetated areas with clear water in turbid shallow lakes. Aquat. Bot. 49: 193 – 196.CrossRefGoogle Scholar
  55. Schreiter, T., 1928. Untersuchungen über den Einfluss einer Helodeawucherung auf das Netzplankton des Hirschberger Grossteiches in Böhmer in den Jahren 1921 bis 1925 incl. V. Praze. Prague. -98Google Scholar
  56. Schriver, P., J. Bogestrand, E. Jeppesen & M. Sondergaard, 1995. Impact of submerged macrophytes on fish-zooplankton-phytoplankton interactions: Large-scale enclosure experiments in a shallow eutrophic lake. Freshwat. Biol. 33: 255 – 270.CrossRefGoogle Scholar
  57. Schutten, J., J. A. Van der Velden & H. Smit, 1994. Submerged macrophytes in the recently freshened lake system Volkerak-Zoom (The Netherlands), 1987–1991. Hydrobiologia 276: 207 – 218.Google Scholar
  58. Skubinna, J. P., T. G. Coon & T. R. Batterson, 1995. Increased abundance and depth of submersed macrophytes in response to decreased turbidity in Saginaw bay, Lake Huron. J. Great Lakes Res. 21: 476 – 488.CrossRefGoogle Scholar
  59. Sondergaard, M. & B. Moss, 1998. Impact of submerged macrophytes on phytoplankton in shallow freshwater lakes. Structuring Role of Submerged Macrophytes in Lakes 131: 115 – 132.CrossRefGoogle Scholar
  60. Timms, R. M. & B. Moss, 1984. Prevention of growth of potentially dense phytoplankton populations by zooplankton grazing in the presence of zooplanktivorous fish in a shallow wetland ecosystem. Limnol. Oceanogr. 29: 472–486.CrossRefGoogle Scholar
  61. Van den Berg, M. S., H. Coops, M.-L. Meijer, M. Scheffer & J. Simons, 1997. Clear water associated with a dense Chara vegetation in the shallow and turbid Lake Veluwemeer, The Netherlands. In Jeppesen, E. et al. (eds), The structuring role of submerged macrophytes in lakes. Springer-Verlag. in prep.Google Scholar
  62. Van Dijk, G. M., A. W. Breukelaar & R. Gijlstra, 1992. Impact of light climate history on seasonal dynamics of a field population of Potamogeton pectinatus L. during a three year period 19861988. Aquat. Bot. 43: 17–41.Google Scholar
  63. Van Dijk, G. M. & W. Van Vierssen, 1991. Survival of a Potamogeton pectinatus L. population under various light conditions in a shallow eutrophic lake Lake Veluwe in The Netherlands. Aquat. Bot. 39: 121–130.CrossRefGoogle Scholar
  64. Van Donk, E., R. D. Gulati, A. Iedema & J. T. Meulemans, 1993. Macrophyte-related shifts in the nitrogen and phosphorus contents of the different trophic levels in a biomanipulated shallow lake. Hydrobiologia 19 – 26.Google Scholar
  65. Vant, W. N., R. J. Davies-Colley, J. S. Clayton & B. T. Coffey, 1986. Macrophyte depth limits in north island New-Zealand lakes of differing clarity. Hydrobiologia 137: 55 – 60.CrossRefGoogle Scholar
  66. Vuille, T., 1991. Abundance standing crop and production of micro-crustacean populations Cladocera, Copepoda, in the littoral zone of Lake Biel Switzerland. Arch. Hydrobiol. 123: 165–186.Google Scholar
  67. Wetzel, R. G., 1975. Limnology. W.B.Saunders Co. Philadelphia.Google Scholar
  68. Wium-Andersen, S., U. Anthoni, C. Christophersen & G. Houen, 1982. Allelopathic effects on phytoplankton by substances isolated from aquatic macrophytes Charales. Oikos 39: 187 – 190.CrossRefGoogle Scholar
  69. Wium-Andersen, S., K. H. Jorgensen, C. Christophersen & U. Anthoni, 1987. Algal growth inhibitors in Sium erectum Huds. Arch. Hydrobiol. 111: 317 – 320.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Marten Scheffer
    • 1
  1. 1.Department of Aquatic Ecology and Water Quality ManagementWageningen Agricultural UniversityWageningenThe Netherlands

Personalised recommendations