Autotrophic picoplankton dynamics in a small shallow lake

  • Elżbieta Szeląg-Wasielewska
Part of the Developments in Hydrobiology book series (DIHY, volume 143)


The paper presents the results concerning seasonal fluctuation of phytoplankton abundance, biomass and the structure of communities, as well as the relative importance of size groups (i.e. autotrophic picoplankton, nanophytoplankton and microphytoplankton) in oligo-mesotrophic Lake Skrzynka (maximum depth 2.9 m; mean depth 1.4 m; area 1.7 ha; volume 2.4 × 104 m3). The abundance of ciliated protozoa, rotifers and crustaceans was monitored simultaneously. Water samples were taken from March to November 1995. The dynamics of autotrophic picoplankton (APP) was characterised by three abundance maxima. The first and highest maximum was recorded in March, the second maximum appeared in August, whereas the third maximum was observed in October. The average APP number was 1.4 × 106 cells m1−1, while average biomass was 1.1 mg 1−1. APP was dominated by cyanobacteria and accounted for 1–85% of total phytoplankton biomass (34% on average). The biomass of phytoplankton larger than 2 μm was often dominated by chrysophytes, dinoflagellates and green algae and was usually higher than APP biomass (except on four days). Dominance of one size group of phytoplankton was observed whenever total phytoplankton biomass was high: APP in early spring, nanophytoplankton in late spring and microphytoplankton in summer. When phytoplankton biomass was low, which was observed in late summer and autumn, the proportion of the size groups was more or less the same. The highest values of APP biomass did not coincide with the maximum of the larger phytoplankton and a significant decrease in APP biomass coincided with an increase in ciliate abundance.

Key words

shallow lake phytoplankton size groups autotrophic picoplankton seasonal succession 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amblard, C., J.-F. Carrias, G. Bourdier & N. Maurin, 1995. The microbial loop in a humic lake: seasonal and vertical variations in the structure of the different communities. Hydrobiologia 300/301: 71–84.CrossRefGoogle Scholar
  2. Bernard, C. & F. Rassoulzadegan, 1993. The role of picoplankton (cyanobacteria and plastidic picoflagellates) in the diet of tintinnids. J. Plankton Res. 15: 361–373.CrossRefGoogle Scholar
  3. Callieri, C. & M. L. Pinolini, 1995. Picoplankton in Lake Maggiore, Italy. Int. Rev. ges. Hydrobiol. 80: 491–501.CrossRefGoogle Scholar
  4. Eguchi, M., T. Oketa, N. Miyamoto, H. Maeda A. Kawai, 1996. Occurrence of viable photoautotrophic picoplankton in the aphotic zone of Lake Biwa, Japan. J. Plankton Res. 18: 539–550.CrossRefGoogle Scholar
  5. Jasser, I., 1997. The dynamics and importance of picoplankton in shallow dystrophic lake in comparison with surface waters of deep lakes with contrastin trophic status. Hydrobiologia 342 /343: 87–93.CrossRefGoogle Scholar
  6. Letarte, Y., ; B. Pinel-Alloul. 1991. Variations spatio-temporelles de l’abondance et de la production du bactérioplankton dans un lac humique du Bouclier canadien. Can. J. Microbiol. 37: 64–73.CrossRefGoogle Scholar
  7. MacIsaac, E. A. J. G. Stockner, 1993. Enumeration of phototrophic picoplankton by autofluorescence microscopy. In Kemp, P. F., B. F. Sherr, E. B. Sherr ; J. J. Cole (eds), Handbook of Methods in Aquatic Microbial Ecology. Lewis Publishers, Boca Raton: 187 – 197.Google Scholar
  8. Malinsky-Rushansky, N. T. Berman, 1991. Picocyanobacteria and bacteria in Lake Kinneret. Int. Rev. ges. Hydrobiol. 76: 555–564.Google Scholar
  9. Mastynski, J. W. Andrzejewski, 1995. Ichtiofauna jezior Wielkopolskiego Parku Narodowego. W: Zasoby przyrodnicze Wielkopolskiego Parku Narodowego i ic ochrona. Reds A. Kostrzewski R. Siwecki. [Ichthyofauna of the Lakes in the Wielkopolski National Park. In Kostrzewski, A. ; R. Siwecki (eds) Natural Resources of the Wielkopolski National Park and Protection], Prace i materialy Wielkopolskiego Parku Narodowego, Morena 3: 57–64.Google Scholar
  10. Nagata, T., 1988. The microflagellate-picoplankton food linkage in the water column of Lake Biwa. Limnol. Oceanogr. 33: 504–517.CrossRefGoogle Scholar
  11. Padisâk, J., L. Krienitz, R. Koschel ; J. Nedoma, 1997. Deep-layer autotrophic picoplankton maximum in the oligotrophic Lake Stechlin, Germany: origin, activity, development and erosion. Eur. J. Phycol. 32: 403–416.Google Scholar
  12. Pick, F. R. ; M. Agbeti, 1991. The seasonal dynamics and composition of photosynthetic picoplankton communities in temperate lakes in Ontario, Canada. Int. Rev. ges. Hydrobiol. 76: 565–580.Google Scholar
  13. Simek, K., M. Macek, J. Pernthaler, V. Straskrabovâ ; R. Psenner, 1996. Can freshwater planktonic ciliates survive on a diet of picoplankton ? J. Plankton Res. 18: 597–613.CrossRefGoogle Scholar
  14. Sdndergaard, M., 1991. Phototrophic picoplankton in temperate lakes: seasonal abundance and importance along a trophic gradient. Int. Rev. ges. Hydrobiol. 75: 617–629Google Scholar
  15. Stockner, J. G., 1988. Phototrophic picoplankton: an overview from marine and freshwater ecosystems. Limnol. Oceanogr. 33: 765775.Google Scholar
  16. Stockner, J. G., 1991. Autotrophic picoplankton in freshwater ecosystems: the view from the summit. Int. Rev. ges. Hydrobiol. 76: 483–492.Google Scholar
  17. Stockner, J. G. ; N. J. Antia, 1986. Algal picoplankton from marine and freshwater ecosystems: a multidisciplinary perspective. Can. J. Fish. aquat. Sci. 43: 2472–2503.CrossRefGoogle Scholar
  18. Stockner, J. G. ; K. S. Shortreed, 1991. Autotrophic picoplankton: community composition, abundance and distribution across a gradient of oligotrophic British Columbia and Yukon Territory lakes. Int. Rev. ges. Hydrobiol. 76: 581–601.CrossRefGoogle Scholar
  19. Szeltg-Wasielewska, E., 1997. Picoplankton and other size groups of phytoplankton in various shallow lakes. Hydrobiologia 342 /343: 79–85.CrossRefGoogle Scholar
  20. Vörös, L., P. Gulyas J. Németh, 1991. Occurrence, dynamics and production of picoplankton in Hungarian shallow lakes. Int. Rev. ges. Hydrobiol. 75: 617–629.Google Scholar
  21. Wehr, J. D., 1990. Predominance of picoplankton and nanoplankton in eutrophie Calder Lake. Hydrobiologia 203: 35–44.CrossRefGoogle Scholar
  22. Weisse, T., 1988. Dynamics of autotrophic picoplankton in Lake Constance. J. Plankton Res. 10: 1179 – 1188.CrossRefGoogle Scholar
  23. Weisse, T. ; U. Kenter, 1991. Ecological characteristics of autotrophie picoplankton in a prealpine lake. Int. Rev. ges Hydrobiol. 76: 493–504.Google Scholar
  24. Weisse, T. ; J. G. Stockner, 1992. Eutrophication: the role of microbial food webs. In de Bernardi, R., R. Pagnotta ; A. Pugnetti (eds), Strategies for Lake Ecosystems Beyond 2000. Mem. Ist. ital. Idrobiol. 52: 133–150.Google Scholar
  25. Zerbe, J., H. Elbanowska, H. Gramowska, M. Adamczewska, T. Sobezynski, M. Kabacinski ; J. Siepak, 1994. Ocena wplywu emisji fluoru i innych zanieczyszczen na wody, roslinnosé i gleby na obszarze WPN i jego otuliny. W: Geoekosystem Wielkopolskiego Parku Narodowego jako obszaru chronionego podlegajacego antropopresji. Red. L. Kozacki. [Estimation of the influence of fluorine and other pollutants on the water, plants and soils in the region of the Wielkopolski National Park and its surroundings. In Kozacki, L. (ed.), Geoecosystem of the Wielkopolski National Park as a Protected Region Subordinated by Anthropopression.], Bogucki Scient. Publ.: 89 – 135.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Elżbieta Szeląg-Wasielewska
    • 1
  1. 1.Department of Water ProtectionAdam Mickiewicz UniversityPoznańPoland

Personalised recommendations