Advertisement

Lake Plessa 107 (Lusatia, Germany) — an extremely acidic shallow mining lake

  • Dieter Lessmann
  • Rainer Deneke
  • Remo Ender
  • Mike Hemm
  • Maria Kapfer
  • Hartwig Krumbeck
  • Kathrin Wollmann
  • Brigitte Nixdorf
Chapter
  • 345 Downloads
Part of the Developments in Hydrobiology book series (DIHY, volume 143)

Abstract

Lake Plessa 107 is an example of the older, relatively small and often shallow mining lakes of Lusatia which only have groundwater inflow. From a morphological point of view, the lake should be polymictic with short stratified periods. But besides temperature, mixing is also determined by chemical gradients in the water column that can lead up to monomixis. The lake water shows an extreme acidification with high concentrations of calcium, iron, aluminium, manganese and sulphate. Despite low TIC and TP concentrations allowing only a low primary production in the pelagial within the oligotrophic range, anoxic conditions can occur during stratification because of Fe(II) oxidation and anoxic groundwater inflow. The phytoplankton is dominated by phytoflagellates. Chlorophyll concentrations follow a yearly pattern determined by temperature and light availability. The zooplankton consists of two rotifer species, ciliates and heliozoans. Sediment analyses show contrary depth gradients of Fe and P with a very high fraction of Fe in the upper sediment layers (up to 60% of DW) which decreases with depth. Probably due to groundwater inflow, at some sites substantial decreases in redox potential and conductivity can be observed with increasing sediment depth accompanied by increases of pH, DOC, DIC and DIP concentrations. No correlations have been found between the available phosphorus or carbon concentrations in the sediment porewater and the phytobenthic biomass. Euglena mutabilis (Euglenophyceae) and Pinnularia acoricola (Bacillariophyceae) are the dominant phytobenthic species. Lake Plessa 107 has a benthic food-web that consists of benthic algae, chironomids and corixids and a pelagic food-web which is composed of phytoflagellates, rotifers, ciliates and heliozoans. The two food-webs are not coupled because larger prey organisms such as crustaceans are missing.

Key words

mining lake acidification plankton phytobenthos macroinvertebrates food-web 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Engelmann, H.-D., 1973. Eine Lichtfalle für den Insektenfang unter Wasser. Entomol. Abh. Mus. Tierkd. 39: 244–246.Google Scholar
  2. Fyson, A. and J. Rucker, 1998. Die Chemie und Ökologie des Lugteichs - eines extrem sauren, meromiktischen Tagebausees. BTU Cottbus, Aktuelle Reihe 5 /98: 18 - 34.Google Scholar
  3. Geller, W., H. Klapper and W. Salomons, 1998. Acidic mining lakes. Springer, Berlin.CrossRefGoogle Scholar
  4. Gyure, R. A., A. Konopka, A. Brooks and W. Doemel, 1987. Algal and bacterial activities in acidic (pH 3) strip mine lakes. Apl. envir. Microbiol. 53: 2069–2076.Google Scholar
  5. Hesslein, R. H., 1976. An in situ sampler for close interval pore water studies. Limnol. Oceanogr. 21: 912–914.CrossRefGoogle Scholar
  6. Kapfer, M., 1998. Assessment of the colonization and primary production of microphytobenthos in the littoral of acidic mining lakes in Lusatia (Germany). Wat. Air Soil Pollut. 108: 331–340.CrossRefGoogle Scholar
  7. Lessmann, D., R. Chmielewski and M. Kühne, 1997. Probennahmetechniken in Tagebaurestseen der Lausitz. GBL-Gemeinschaftsvorhaben (Grundwassergüteentwicklung in den Braunkohlegebieten der neuen Länder) 4: 50 - 55.Google Scholar
  8. Lessmann, D. and B. Nixdorf, 1998. Morphologie, hydrochemische Klassifizierung and Phytoplanktonbesiedlung von Tagebauseen der Lausitz. GBL-Gemeinschaftsvorhaben (Grundwassergüteentwicklung in den Braunkohlegebieten der neuen Länder) 5: 195 - 201.Google Scholar
  9. Lessmann, D. and B. Nixdorf, 1999. Acidification control of phytoplankton diversity, spatial distribution and trophy in mining lakes. Verh. int. Ver. Limnol. 27.Google Scholar
  10. McConathy, J. R. and J. B. Stahl, 1982. Rotifera in the plankton and among filamentous algal clumps in 16 acid strip mine lakes. Trans. Ill. Acad. Sci. 75: 85–90.Google Scholar
  11. Nakatsu, C. and T. C. Hutchinson, 1988. Extreme metal and acid tolerance of Euglena mutabilis and an associated yeast from Smoking Hills, Northwest Territories, and their apparent mutualism. Microb. Ecol. 16: 355–363.CrossRefGoogle Scholar
  12. Nixdorf, B., D. Lessmann, U. Grünewald and W. Uhlmann, 1997. Limnology of extremely acidic mining lakes in Lusatia (Germany) and their fate between acidity and eutrophication. Proc. 4th int. Conf. Acid Rock Drainage, Vancouver, Canada IV: 1745 - 1760.Google Scholar
  13. Nixdorf, B. and M. Kapfer, 1998: Stimulation of phototrophic pelagic and benthic metabolism close to sediments in acidic mining lakes. Wat. Air Soil Pollut. 108: 317–330.CrossRefGoogle Scholar
  14. Nixdorf, B., U. Mischke and D. Lessmann, 1998a: Chrysophytes and chlamydomonads: pioneer colonists in extremely acidic mining lakes (pH3) in Lusatia (Germany). Hydrobiologia 369 /370: 315 - 327.CrossRefGoogle Scholar
  15. Nixdorf, B., K. Wollmann and R. Deneke, 1998b. Ecological potentials for planktonic development and food web interactions in extremely acidic mining lakes in Lusatia. In Geller W., H. Klapper and W. Salomons (eds), Acidic Mining Lakes. Springer, Berlin: 147 - 168.Google Scholar
  16. Olaveson, M. M. and C. Nalewajko, 1994. Acid rain and freshwater algae. Arch. Hydrobiol. Beih. 42: 99–123.Google Scholar
  17. Stemberger, R. S. and J. J. Gilbert, 1987. Rotifer threshold food concentrations and the size-efficiency hypothesis. Ecology 68: 181 – 187.CrossRefGoogle Scholar
  18. Whitton, B. A. and B. M. Diaz, 1981. Influence of environmental factors on photosynthetic species composition in highly acidic waters. Verh. int. Ver. Limnol. 21: 1459–1465.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Dieter Lessmann
    • 1
  • Rainer Deneke
    • 1
  • Remo Ender
    • 1
  • Mike Hemm
    • 1
  • Maria Kapfer
    • 1
  • Hartwig Krumbeck
    • 1
  • Kathrin Wollmann
    • 1
  • Brigitte Nixdorf
    • 1
  1. 1.Chair of Water ConservationBrandenburg Technical UniversityCottbusGermany

Personalised recommendations