Comparison of the areal amount of chlorophyll a of planktonic and attached microalgae in a shallow coastal lagoon

  • D. Conde
  • S. Bonilla
  • L. Aubriot
  • R. de León
  • W. Pintos
Part of the Developments in Hydrobiology book series (DIHY, volume 143)


Three microalgal communities were studied between August 1996 and September 1997 in a brackish lagoon, Laguna de Rocha (Uruguay), located on the south-eastern coast of South America. The system is shallow and periodically connected to the Atlantic Ocean and the anthropogenic influence is scarce. The freshwater and marine water inflows cause an extreme horizontal gradient in water level (range = 0.25–1.2 m), conductivity (range = 0.2–48.9 mS cm−1), nutrient concentration and sediment characteristics (sandy to muddy). At the northern station, dominated by freshwater, and at the southern one, dominated by the marine influence, the chlorophyll a amount of phytoplankton, microphytobenthos and epiphyton was measured on a monthly basis. Relating to lake surface, chlorophyll a ranged from 0.7 to 9.0 mg m−2 for phytoplankton, and from 2.7 to 162 mg m−2 for microphytobenthos. The epiphyton reached chlorophyll amounts from 2.7 to 536 mg m−2 relating to the surface of the colonized macrophytes. The contribution of the epiphyton to the total algal biomass of the system was negligible however, since the development of the macrophyte substrate was scarce during the whole study period. Phytoplankton biomass was similar at both stations whereas microphytobenthos biomass was significantly higher (p<0.05) at the freshwater station, probably due to better nutrient availability. Considering the relative microalgal biomass estimated through the chlorophyll a content of the three communities, the system was dominated by the epipelon in the freshwater area and by epipsammon in the marine one. The benthic dominance classifies the system in a ‘dry state’ (sensu Goldsborough & Robinson, 1996), favoured by the extreme shallowness, the high nutrient content and light availability at the bottom.

Key words

phytoplankton epiphyton microphytobenthos biomass resuspension 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abreu, P., C. Odebrecht & A. Gonzalez, 1994. Particulate and dissolved phytoplankton production of the Patos lagoon estuary, southern Brazil: comparison of methods and influencing factors. J. Plankton Res. 16: 737–735.CrossRefGoogle Scholar
  2. APHA, 1985. Standard methods for the examination of water and wastewater. AWWA/WPCF, New York: 1286 pp.Google Scholar
  3. Arocena, R., D. Conde, D. Fabian, J. Gorga & J. Clemente, 1996. Calidad de agua en la Laguna de Rocha: rol de sus principales afluentes. PROBIDES/GEF. Serie: Documentos de Trabajo N° 13, Rocha: 53 pp.Google Scholar
  4. Ayup, R., 1983. Particularidades de la apertura de la barrera litoral de la laguna de Rocha. Causas que la favorecen y aportes sedimnetarios al litoral costero oceanico uruguayo. Res. Corn. Jorn. Cienc. Nat. ( Montevideo ) 3: 85–86.Google Scholar
  5. Barnes, R. S. K., 1980. Coastal lagoons. Cambridge University Press, Cambridge: 106 pp.Google Scholar
  6. Bergesch, M., C. Odebrecht & P. Abreu, 1995. Microalgas do estuario da Lagoa dos Patos: interaçao entre o sedimento e a coluna de agua. Oecol. Brasil. (Rio De Janeiro) 1: 273–289.CrossRefGoogle Scholar
  7. Boero, F., G. Belmonte, G. Fanelli, S. Piraino & F. Rubino, 1996. The continuity of living matter and the discontinuities of its constituents: do plankton and benthos really exist? Trends Ecol. Evol. 11: 177–180.Google Scholar
  8. Bonilla, S., 1998. Estructura y dinamica de la comunidad epifítica algal en un sistema costero mixohalino. M.Sc. ThesisPEDECIBA/Biology, Montevideo: 106 pp.Google Scholar
  9. Burkholder, J. M. & R. Wetzel, 1989. Epiphytic microalgae on natural substrata in a hardwater lake: seasonal dynamics of community structure, biomass and ATP content. Arch. Hydrobiol./Supp1. 83: 1–56.Google Scholar
  10. Carmouze, J. P., B. Knoppers & P. Vasconcelos, 1991. Metabolism of a subtropical brazilian lagoon. Biogeochemistry 14: 129–148.CrossRefGoogle Scholar
  11. Cattaneo, A., P. Legendre & T. Niyonsenga, 1993. Exploring periphyton unpredictability. J. N. Am. Benthol. Soc., 12: 418–430.CrossRefGoogle Scholar
  12. Comín, F. A. & I. Valiela, 1993. On the controls of phytoplankton abundance and production in coastal lagoons. J. Coast. Res. 9: 895–906.Google Scholar
  13. Costanza, R., W. M. Kemp & W. R. Boynton, 1993. Predictability, scale and biodiversity in coastal and estuarine ecosystems: implications for management. AMBIO 22: 88–96.Google Scholar
  14. De Jonge, V. N., 1992. Physical processes and dynamics of microphytobenthos in the Ems estuary (the Netherlands). Ph.D. Thesis, Groningen University, Haren: 160 pp.Google Scholar
  15. Elliot, J. M., 1983. Some methods for the statistical analysis of benthic invertebrates. Freshwater Biological Association, Scientific Publication 25, Windermere: 158 pp.Google Scholar
  16. García, C. A., 1997. Physical Oceanography. Coastal marine environments and their biota. In Seeliger U., C. Odebrecht & J. P. Castelo (eds), Subtropical Convergence Environments. The Coast and the Sea in the Southern Atlantic. Springer Verlag, Berlin: 94–95.Google Scholar
  17. Goldsborough, L. G. & G. G. C. Robinson, 1996. Pattern in wetlands. In Stevenson, R. J., M. L. Bothwell & R. L. Lowe (eds), Algal Ecology. Freshwater Benthic Ecosystems. Academic Press, San Diego: 78–120.Google Scholar
  18. Hansson, L-A., 1988. Effects of competitive interactions on the biomass development of planktonic and periphytic algae in lakes. Limnol. Oceanogr. 33: 121–128.CrossRefGoogle Scholar
  19. Hansson, L-A., 1992. Factors regulating periphytic algal biomass. Limnol. Oceanogr. 37: 322–328.CrossRefGoogle Scholar
  20. Jenkerson, C. G. M. & R. Hickman, 1986. Interrelationships among the epipelon, epiphyton, and phytoplankton in a eutrophic lake. Int. Rev. ges. Hydrobiol. 71: 557–579.CrossRefGoogle Scholar
  21. Jönsson, B., 1993. Interactions in marine shallow-water sediments with emphasis on microalgae. Ph.D. thesis. Department of Marine Botany, University of Göteborg, Göteborg: 150 pp.Google Scholar
  22. Knoppers, B., 1994. Aquatic primary production in coastal lagoons. In Kjerfve, B. (ed), Coastal Lagoon Processes. Elsevier Oceanography Series 60, Elsevier Science Publishers: 243–285.Google Scholar
  23. Lorenzen, C. J., 1967. Determination of chlorophyll and phaeopigments: spectrophotometric equations. Limnol. Oceanogr. 12: 343–346.CrossRefGoogle Scholar
  24. Maclntyre, H. L. & J. J. Cullen. 1996. Primary production by suspended and benthic microalgae in a turbid estuary: time-scales of variability in San Antonio Bay, Texas. Mar. Ecol. Prog. Ser. 145: 245–268.CrossRefGoogle Scholar
  25. Maclntyre, H. L., R. J. Geider & D. C. Miller, 1996. Microphytobenthos: The ecological role of the `secret garden’ of unvegetated, shallow-water marine habitats. I. Distribution, abundance and primary production. Estuaries 19: 186–201.CrossRefGoogle Scholar
  26. McDougal, R. L., L. G. Goldsborough & B. L. Hann, 1997. Responses of a prairie wetland to press and pulse additions of inorganic nitrogen and phosphorous: production by planktonic and benthic algae. Arch. Hydrobiol. 140: 145–167.Google Scholar
  27. Mukai, T., 1987. Effects of surrounding physical and chemical environment on the spatial heterogeneity in phytoplankton communities of Hiroshima Bay, Japan. J. Coast. Res. 3: 269–279.Google Scholar
  28. Müller, U., 1994. Seasonal development of periphytic algae on Phragmites australis (Cay.) Trin. ex Sten. in a eutrophic lake. Arch. Hydrobiol. 129: 273–292.Google Scholar
  29. Niencheski, L. F. & M. G. Baumgarten, 1997. Environmental chemistry. Environment and biota of the Patos lagoon estuary. In Seeliger U., C. Odebrecht & J. P. Castelo (eds), Subtropical Convergence Environments. The Coast and the Sea in the Southern Atlantic. Springer Verlag, Berlin: 20–23.Google Scholar
  30. Nusch, E. A., 1980. Comparison of different methods for chlorophyll and phaeopigments determination. Arch. Hydrobiol. Beih. Ergebn. Limnol. 14: 14–36.Google Scholar
  31. Pérez, L. & J. C. Canteras, 1990. Spatial heterogeneity of phytoplankton in an estuary of Cantabria, northern Spain. J. Coast. Res. 6: 157–168.Google Scholar
  32. Pintos, W., D. Conde, R. De León, M. Cardezo, A. Jorcín & R. Sommaruga, 1991. Some limnological characteristics of Laguna de Rocha (Uruguay). Rev. Bras. Biol. 51: 79–84.Google Scholar
  33. Sand-Jensen, K. & J. Borum, 1991. Interactions among phytoplankton, periphyton and macrophytes in temperate freshwaters and estuaries. Aquat. Bot. 41: 137–175.CrossRefGoogle Scholar
  34. Schaffer, G. P. & M. J. Sullivan, 1988. Water column productivity attributable to displaced benthic diatoms in well-mixed shallow estuaries. J. Phycol. 24: 132–140.Google Scholar
  35. Sculthorpe, C. C., 1967. The Biology of Aquatic Vascular Plants. Edward Arnold, London: 609 pp.Google Scholar
  36. Sommaruga, R. & D. Conde, 1990. Distribución de la materia organica en los sedimentos recientes de la laguna de Rocha (Uruguay). Atlantica 11: 35–44.Google Scholar
  37. Sommaruga, R. & W. Pintos, 1991. Laguna de Rocha. In LBRI/ILEC (eds), Data Book of World Lake Environments. A Survey of the State of World Lakes. ILEC/UNEP, SAM-9, Otsu: 7 pp.Google Scholar
  38. Steinman, A. D., 1996. Effects of grazers on freshwater benthic algae. In Stevenson, R. J., M. L. Bothwell & R. L. Lowe (eds), Algal Ecology. Freshwater Benthic Ecosystems. Academic Press, San Diego: 341–373.Google Scholar
  39. Stevenson, R. J., 1996. An introduction to algal ecology in freshwater benthic habitats. In Stevenson, R. J., M. L. Bothwell & R. L. Lowe (eds), Algal Ecology. Freshwater Benthic Ecosystems. Academic Press, San Diego: 3–30.Google Scholar
  40. Sullivan, M. & C. Moncreiff, 1988. Primary production of edaphic algal communities in a Mississippi salt marsh. J. Phycol. 24: 4958.Google Scholar
  41. Wetzel, R., 1990. Land-water interfaces: metabolic and limnological regulators. Verh. int. Ver. Limnol. 24: 6–24.Google Scholar
  42. Wetzel, R. G., 1996. Benthic algae and nutrient cycling in lentic freshwater ecosystems. In Stevenson, R. J., M. L. Bothwell & R. L. Lowe (eds), Algal Ecology. Freshwater Benthic Ecosystems. Academic Press, San Diego: 641–669.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • D. Conde
    • 1
  • S. Bonilla
    • 1
  • L. Aubriot
    • 1
  • R. de León
    • 1
  • W. Pintos
    • 1
  1. 1.Sección Limnología, Facultad de CienciasUniversidad de la RepúblicaMontevideoUruguay

Personalised recommendations