Advertisement

The effect of extreme water level decrease on hydrochemistry and phytoplankton in a shallow eutrophic lake

  • Tiina Nõges
  • Peeter Nõges
Chapter
Part of the Developments in Hydrobiology book series (DIHY, volume 143)

Abstract

A drought-induced drastic decrease in mean depth and volume brought about several effects in the ecosystem of L. Võrtsjärv (270 km2). Differences in alkalinity, Si and inorganic N in two consecutive winters can be attributed to the concentration effect resulting from different ice/water volume ratios in the lake. Smaller initial amount of oxygen that remained under the ice in winter 1995/96 accounted largely for the observed anoxia. Increase in phytoplankton biovolume represented another concentration effect, as a similar areal primary production in 1995 and 1996 resulted in about twice a higher density of algal crop in the summer of 1996, when the average amount of water in the lake was 1.7 times smaller. Due to a better mixing of shallow water, integral oxygen concentration during the ice-free period in 1996 was systematically higher than in 1995. Stronger sediment resuspension in 1996 enriched the water with suspended solids and nutrients, resulting in a slight increase in the trophic state. Lower water level in 1996 improved light conditions by ‘cutting off’ less illuminated and less productive deep layers. This was probably one of the main factors which caused the collapse of the common dominants Limnothrix redekei and L. planctonica and initiated mass development (max. 36 g m−3)of Cyanonephron styloides. The observed changes in the phytoplankton composition in 1996 could be caused also by the selective grazing of larger zooplankton.

Key words

shallow eutrophic lake water level phytoplankton species succession chemistry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cronberg, G., 1982. Phytoplankton changes in Lake Trummen induced by restoration. Folia Limnol. Scand. 18: 1–119.Google Scholar
  2. Edler, L. (ed.), 1979. Recommendations for Marine Biological Studies in the Baltic Sea. Phytoplankton and chlorophyll. The Baltic Marine Biologists, Publ. 5: 1–38.Google Scholar
  3. Gibson, C. E., 1987. Adaptations in Oscillatoria redekei at very slow growth rates — changes in growth efficiency and phycobilin complement. Br. Phycol. J. 22: 187–191.Google Scholar
  4. Gibson, C. E., 1993. The phytoplankton populations of Lough Neagh. In Wood, R. B. & R. V. Smith (eds), Lough Neagh. Kluwer, Dordrecht/Boston/London: 203–223.Google Scholar
  5. Grasshoff, K., M. Ehrhardt & K. Kremling (eds), 1982. Methods of Seawater Analysis. Verlag Chemie.Google Scholar
  6. Günzl, H., 1997. Das Algenjahr im Federsee. Jh. Ges. Naturkde. Württemberg 153: 131–139.Google Scholar
  7. Haberman, J., P. Nôges, T. Nôges, E. Pihu, K. Kangur, A. Kangur & V. Kisand, 1998. Characterization of Lake Vôrtsjärv. Limnologica 28: 3–11.Google Scholar
  8. Havens, K. E., E. J. Phlips, M. F. Cichra & B.-L. Li, 1998. Light availability as a possible regulator of cyanobacteria species composition in a shallow subtropical lake. Freshwat. Biol. 39: 547–556.CrossRefGoogle Scholar
  9. Hickel, B., 1988. Unexpected disappearance of cyanophyte blooms in Plußsee (North Germany). Arch. Hydrobiol. Suppl. 80: 545554.Google Scholar
  10. Huttula, T. & T. Nôges (eds), 1998. Present State and Future Fate of Lake Vôrtsjärv. Results from Finnish-Estonian joint project in 1993–1997. The Finnish Environment 209: 1–150.Google Scholar
  11. Jaani, A., 1973. Htidroloogia. In Timm T. (ed.), Vôrtsjärv. Valgus, Tallinn: 37–60.Google Scholar
  12. Jaani, A., 1990. Vôrtsjärve veerezhiim ja -bilanss. Eesti Loodus 11: 743–747.Google Scholar
  13. Järvet, A., 1997. Long-term changes of pollution load of Lake Vörtsjärv. Problems of Contemporary Ecology. Temporal changes in Estonian nature and environment. Tartu. 60–65 (in Estonian).Google Scholar
  14. Jeffrey, S. W. & G. F. Humphrey, 1975: New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanzen 167: 191–194.Google Scholar
  15. Krienitz, L., R. Kasprzak & R. Koschel, 1996. Long term study on the influence of eutrophication, restoration and biomanipulation on the structure and development of phytoplankton communities in Feldeberger Haussee (Baltic Lake District, Germany). Hydrobiologia 330: 89–110.CrossRefGoogle Scholar
  16. Kukk, E., 1958. Sinivetikate liikide ja vormide uusleide NSV Liidus. TRU Toim. Botaanika-alased tööd 64: 198–209.Google Scholar
  17. Meffert, M.-E., 1989. Planktic unsheathed filaments (Cyanophyceae) with polar and central gas-vacuoles II. Biology, population dynamics and biotopes of Limnothrix redekei (van Goor) Meffert. Arch. Hydrobiol. 116: 257–282.Google Scholar
  18. Mur, L. R. & H. Schreurs, 1995. Light as a selective factor in the distribution of phytoplankton species. Wat. Sci. Technol. 32: 823–847.Google Scholar
  19. Nicklisch, A., 1994. Does mortality by nitrogen deficiency influence the succession of Limnothrix redekei and Planktothrix agardhii? Verh. int. Ver. Limnol. 25: 2214–2217.Google Scholar
  20. Nicklisch, A. & J.-G. Kohl, 1989. The influence of light on the primary production of two planktic blue-green algae. Arch. Hydrobiol. Beih. Ergebn. Limnol. 33: 451–455.Google Scholar
  21. Nôges, P., A. Järvet, L. Tuvikene & T. Nôges, 1998. The budgets of nitrogen and phosphorus in shallow eutrophic Lake Vôrtsjärv. Hydrobiologia 363: 219–227.CrossRefGoogle Scholar
  22. Nôges, P. & R. Laugaste, 1998. Seasonal and long-term changes of phytoplankton in L. Vôrtsjärv. Limnologica 28: 21–28.Google Scholar
  23. Nôges, P., T. Nôges, J. Haberman, R. Laugaste & V. Kisand, 1997. Tendencies and relations in the plankton community and pelagic environment of Lake Vôrtsjäry during three decades — Proc. Estonian Acad. Sci. Biol. Ecol. 46: 40–57.Google Scholar
  24. Nöges, P. & T. Nöges, 1998. The effect of fluctuating water level on the ecosystem of Lake Vörtsjärv, Central Estonia. Proc. Estonian Acad. Sci. Biol. Ecol. 47: 98–113.Google Scholar
  25. Nöges, P., L. Tuvikene, T. Nöges T. & A. Kisand, 1999. Primary production, sedimentation and resuspension in large shallow lake Vörtsjärv. Aquat. Sci. 61: 168–182.CrossRefGoogle Scholar
  26. Nöges, T., V. Kisand, P. Nöges, A. Pöllumäe, L. Tuvikene & P. Zingel, 1998. Plankton seasonal dynamics and its controlling factors in shallow polymictic eutrophic Lake Vörtsjärv, Estonia. Int. Rev. ges. Hydrobiol. 83: 279–296.CrossRefGoogle Scholar
  27. Phlips, E., M. Cichra, K. E. Havens, C. Hanlon, S. Badylak, B. Rueter, M. Randall & P. Hansen, 1997. Relationships between phytoplankton dynamics and the availability of light and nutrients in a shallow subtropical lake. J. Plankton Res. 19: 319–342.CrossRefGoogle Scholar
  28. Polli, B. & M. Simona, 1992. Qualitative and quantitative aspects of the evolution of the planktonic populations in Lake Lugano. Aquat. Sci. 54: 303–320.CrossRefGoogle Scholar
  29. Pöllumde, A. & J. Haberman, 1998. The effect of fluctuating water level on the zooplankton of lake Vörtsjärv, Central Estonia. Proc. Estonian Acad. Sci. 47: 259–267.Google Scholar
  30. Reynolds, C. S., 1984. The ecology of freshwater phytoplankton. Cambridge University Press, Cambridge: 384 pp.Google Scholar
  31. Steinberg, C., 1983. Effect of artificial destratification on the phytoplankton populations in a small lake. J. Plankton Res. 5: 855–864.CrossRefGoogle Scholar
  32. Tilzer, M. M., 1987. Light-dependence of photosynthesis and growth in cyanobacteria: implications for their dominance in eutrophic lakes. New Zeal. J. mar. Freshwat. Res. 21: 401–412.CrossRefGoogle Scholar
  33. Ütermöhl, H., 1958: Zur Vervollkommung der quantitativen Phytoplanktonmethodik. Mitt. int. Ver. Theor. Angew. Limnol. 9: 1–38.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Tiina Nõges
    • 1
    • 2
  • Peeter Nõges
    • 1
    • 2
  1. 1.Institute of Zoology and HydrobiologyUniversity of TartuRannu, Tartu CountyEstonia
  2. 2.Võrtsjärv Limnological Station of the Institute of Zoology and BotanyEstonian Agricultural UniversityRannu, Tartu CountyEstonia

Personalised recommendations