Reduction of Microcystis blooms in a hypertrophic reservoir by a combined ecotechnological strategy

  • Thomas Deppe
  • Klaus Ockenfeld
  • Andreas Meybohm
  • Michael Opitz
  • Jürgen Benndorf
Part of the Developments in Hydrobiology book series (DIHY, volume 143)


In Bautzen reservoir, a shallow, hypertrophic water in Eastern Saxony, biomanipulation led to structural changes in the phytoplankton community but did not reduce algal biomass. To supplement the top-down management, a new type of water treatment technology was tested during two seasons (May–August 1996/1997), aiming at the bottom-up control of mass developments of the cyanobacterium Microcystis aeruginosa. The technology is based on a combined lake-internal phosphorus precipitation and a transport of hypolimnetic water rich in free carbon dioxide into the upper layers. During the treatment periods, there were found both an increase of CO2 concentrations in the mixed layer and an extension of the period in which free CO2 was detected in the epilimnion. The concentrations of phosphorus could be lowered drastically in the whole water body. Microcystis was almost totally suppressed (1996) or appeared with a delay (1997) compared to the regular annual pattern observed before the treatment. In contrast to the preceding year (1995), diatoms played a major role in the summer phytoplankton during the treatment years (1996/1997). The two application periods are compared with respect to the influence of meteorologically determined variables.

Key words

eutrophication Microcystis reservoir restoration phosphorus precipitation carbon dioxide 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ausgewählte Methoden der Wasseruntersuchung, Vol. 1, 1976. Chemische, physikalische und elektrochemische Methoden. Gustav Fischer Verlag, Jena.Google Scholar
  2. Benndorf, J., 1987. Food web manipulation without nutrient control: a useful strategy in lake restoration? Schweiz. Z. Hydro]. 49: 237 – 248.Google Scholar
  3. Benndorf, J., 1995. Possibilities and limits for controlling eutrophication by biomanipulation. Int. Rev. ges. Hydrobiol. 80: 519 – 534.CrossRefGoogle Scholar
  4. Denmann, K. L. & A. E. Gargett, 1983. Time and space scales of vertical mixing and advection of phytoplankton in the upper ocean. Limnol. Oceanogr. 28: 801 – 815.Google Scholar
  5. Drake, J. C. &S. I. Heaney, 1987. Occurence of phosphorus and its potential remobilization in the littoral sediments of a productive English lake. Freshwat. Biol. 17: 513 – 523.Google Scholar
  6. Holm, N. P. &D. E. Armstrong, 1981. Role of nutrient limitation competition in controlling the populations of Asterionella formosa and Microcystis aeruginosa in semicontinuous culture. Limnol. Oceanogr. 26: 622–634.Google Scholar
  7. Hosper, S. H. & E. Jagtman, 1990: Biomanipulation additional to nutrient control for restoration of shallow lakes in The Netherlands. Hydrobiologia 200/201: 523 – 534.Google Scholar
  8. Ibelings, B. W., L. R. Mur & A. E. Walsby, 1991. Diurnal changes in buoyancy and vertical distribution of Microcystis in two shallow lakes. J. Plankton Res. 13: 419 – 436.CrossRefGoogle Scholar
  9. Kamjunke, N., Deppe, T. &J. Benndorf, 1998. Bacterial production under varying trophic conditions and its importance as food source for daphnids in a biomanipulated reservoir. Int. Rev. Hydrobiol. 83: 413 – 420.Google Scholar
  10. King, D. L., 1970. The role of carbon in eutrophication. J. Wat. Pollut. Cont. Fed. 42: 2035 – 2051.Google Scholar
  11. Klapper, H., 1992. Eutrophierung and Gewässerschutz. Gustav Fischer Verlag, Jena, Stuttgart.Google Scholar
  12. Köhler, J., 1992. Influence of turbulent mixing on growth and primary production of Microcystis aeruginosa in the hypertrophic Bautzen reservoir. Arch. Hydrobiol. 123: 413 – 429.Google Scholar
  13. Lampert, W., 1982. Further studies on the inhibitory effect of the toxic blue-green Microcystis aeruginosa on the filtering rate of zooplankton. Arch. Hydrobiol. 95: 207 – 220.Google Scholar
  14. Miersch, U., 1993. Wissenschaftliches Gutachten zur Wassergütebewirtschaftung der Talsperre Bautzen. Technische Universität Dresden, Institut für Hydrobiologie.Google Scholar
  15. Nicklisch, A. & J.-G. Kohl, 1983. Growth kinetics of Microcystis aeruginosa (Kütz.) Kütz. as a basis for modelling its population dynamics. Int. Rev. ges. Hydrobiol. 68: 317 – 326.CrossRefGoogle Scholar
  16. Paerl, H. W. &J. F. Ustach, 1982. Blue-green algal scums: an explanation for their occurrence during freshwater blooms. Limnol. Oceanogr. 27: 212 – 217.Google Scholar
  17. Pierce, J. & T. Omata, 1988. Uptake and utilization of inorganic carbon by cyanobacteria. Photosynthesis Res. 16: 141 – 154.CrossRefGoogle Scholar
  18. Schreurs, H., 1992. Cyanobacterial dominance: relations to eutrophication and lake morphology. Thesis, University of Amsterdam: 183 pp.Google Scholar
  19. Shapiro, J., 1984. Blue-green dominance in lakes: the role and management significance of pH and CO2. Int. Rev. ges. Hydrobiol 69: 765 – 780.CrossRefGoogle Scholar
  20. Shapiro, J., 1997. The role of carbon dioxide in the initiation and maintenance of blue-green dominance in lakes. Freshwat. Biol. 37: 307 – 323.CrossRefGoogle Scholar
  21. Sommer, U., 1989. Nutrient status and nutrient competition of phytoplankton in a shallow, hypertrophie lake. Limnol. Oceanogr. 34: 1162 – 1173.CrossRefGoogle Scholar
  22. Tailing, J. F., 1976. The depletion of carbon dioxide from lake water by phytoplankton. J. Ecol. 64: 79 – 121.CrossRefGoogle Scholar
  23. Tilman, D., S. S. Kilham & P. Kilham, 1982. Phytoplankton community ecology: the role of limiting nutrients. Annu. Rev. ecol. Syst. 13: 349 – 372.CrossRefGoogle Scholar
  24. Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitt. int. Verein. Limnol. 9: 1 – 38.Google Scholar
  25. Watanabe, M. F., K. Harada, W. W. Carmichael &H. Fujiki (eds.) 1996. Toxic Microcystis. CRC Press, Boca Raton, FL: 262 pp.Google Scholar
  26. Williams, T. G. & D. H. Turpin, 1987. Photosynthetic kinetics determine the outcome of competition for dissolved inorganic carbon by freshwater microalgae: implications for acidified lakes. Oecologia 73: 307 – 311.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Thomas Deppe
    • 1
  • Klaus Ockenfeld
    • 1
  • Andreas Meybohm
    • 1
  • Michael Opitz
    • 1
  • Jürgen Benndorf
    • 1
  1. 1.Institute of HydrobiologyDresden University of TechnologyDresdenGermany

Personalised recommendations