Advertisement

On the occurrence of clear-water phases in relation to shallowness and trophic state: a comparative study

  • Rainer Deneke
  • Brigitte Nixdorf
Chapter
  • 345 Downloads
Part of the Developments in Hydrobiology book series (DIHY, volume 143)

Abstract

We present a comparative study on the occurrence of spring clear-water phases in six eutrophic lakes (two deep, four very shallow lakes dominated by plankton, TP: 0.06–0.13 mg 1−1) in the Scharmiitzelsee region (Germany). Our aim was to analyse the occurrence and intensity of clear-water phases in relation to shallowness and trophic state. We defined a clear-water phase by a continuous increase of Secchi depth, a corresponding decrease in algal biomass and a shift in phytoplankton species composition during the growth phase of cladoceran zooplankton. For shallow lakes, we used the increase of the euphotic depth up to maximum depth as an additional criterion. Only in two of six lakes a clear-water phase occurred. In two lakes, no spring peak of cladocerans developed. In two other lakes, a high biomass of grazing resistant cyanobacteria was not affected by cladoceran maxima. Daphnia galeata was an important component of the grazer community in lakes with a clear-water phase, whereas lakes without a clear-water phase were dominated by Bosmina longirostris. Top-down control of grazing by fish predation is discussed as the main factor determining biomass, composition and timing of the cladoceran spring peak. The assumed relative strength of fish predation between lakes corresponds to the response in algal biomass, dominance of cyanobacteria and is inversely related to the potential grazing pressure (ratio of cladoceran and algal biomass). Bottom-up effects (food quality) and additional factors (fungal infection, flushing rate) may also influence growth and timing of cladocerans. Our results support the view that a high biomass of grazing zooplankton is essential for the occurrence of a clear-water phase, but not sufficient to explain variability between lakes. High cladoceran maxima in hypertrophic lakes indicate that food quality seems not to limit grazer biomass. Decoupling of zo­oplankton and phytoplankton may be the result of early and fast growth of grazing resistant algae. We conclude that shallowness and trophy may indirectly reduce the extent and predictibility of a clear-water phase by enhanced growth of cyanobacteria and increasing predation pressure at least for lakes on this TP level.

Key words

clear-water phase cyanobacteria Cladocera shallow lakes seasonal succession PEG model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adrian, R., R. Deneke, U. Mischke, R. Stellmacher & P. Lederer, 1995. A long-term study of the Heiligensee (1975–1992). Evidence for effects of climatic change on the dynamics of eutrophied lake ecosystems. Arch. Hydrobiol. 133: 315–337.Google Scholar
  2. Arndt, H. & B. Nixdorf, 1991. Spring clear-water phase in a eutrophic lake: control by herbivorous zooplankton enhanced by grazing on components of the microbial web. Verh. int. Ver. Limnol. 24: 879–883.Google Scholar
  3. Arndt, H., M. Krocker, B. Nixdorf & A. Köhler, 1993. Long-term annual and seasonal changes of meta-and proto-zooplankton in Lake Müggelsee (Berlin): effects of eutrophication, grazing activities and the impact of predation. Int. Rev. ges. Hydrobiol. 78: 379–402.CrossRefGoogle Scholar
  4. Arp, W., 1997. Ein methodischer Ansatz zur Planktonuntersuchung am Beispiel Berliner und Brandenburger Gewässer. Dissertation. Technical University Berlin: 187 pp.Google Scholar
  5. Balvay, G., M. Gawler & J. P. Pelletier, 1990. Lake trophic status and the development of the clear-water phase in lake Geneva. In Tilzer M. M. & C. Serruya (eds), Large Lakes. Springer Verlag, Berlin: 580–591.Google Scholar
  6. Behrendt, H. & B. Nixdorf, 1993. The carbon balance of phytoplankton production and loss processes based on in situ measurements in a shallow lake. Int. Rev. ges. Hydrobiol. 78: 439–458.CrossRefGoogle Scholar
  7. Benndorf, J., 1995. Possibilities and limits for controlling eutrophication by biomanipulation. Int. Rev. ges. Hydrobiol. 80: 519–534.CrossRefGoogle Scholar
  8. Brooks, J. L. & S. I. Dodson, 1965. Predation, body size and composition of plankton. Science 150: 28–35.PubMedCrossRefGoogle Scholar
  9. DeMott, W. R., & W. C. Kerfoot, 1982. Competition among cladocerans: nature of the interaction between Bosmina and Daphnia. Ecology 63: 1949–1966.CrossRefGoogle Scholar
  10. Deneke, R., A. Kleeberg, R. Hämmerling & B. Nixdorf, 1998. Trophiestatus und Bewertung der Seen im Scharmützelseegebiet (Brandenburg) im Zeitraum 1994–97 als Grundlage für die Erarbeitung von Restaurierungsmaßnahmen. In A. Trautmann (ed), Internationale Seen-Fachtagung 1998–Aktionsprogramm zur Sanierung oberschwäbischer Seen. Oberschwäbische Verlagsanstalt, Ravensburg: 295–306.Google Scholar
  11. Deutsche Einheitsverfahren zur Wasser-, Abwasser-und Schlammuntersuchung, 1986–1996. Verlag Chemie GmbH, Weinheim.Google Scholar
  12. Edmondson, W. T., 1960. Reproductive rates of rotifers in natural populations. Mem. Ist. ital. Idrobiol. 12: 21–77.Google Scholar
  13. Elser, J. J. & C. R. Goldman, 1991. Zooplankton effects on phytoplankton in lakes of contrasting trophic status. Limnol. Oceanogr. 36: 64–90.CrossRefGoogle Scholar
  14. Flößner, D., 1972. Krebstiere, Crustacea. Kiemen-und Blattfüßer, Branchiopoda. Fischläuse, Branchiura. In Dahl F. (Begr.), M. Dahl & F. Peus, (Hrsg.), Die Tierwelt Deutschlands. 60. Teil. Gustav Fischer Verlag, Jena.Google Scholar
  15. Flößner, D. & K. Kraus, 1986. On the taxonomy of the Daphnia hyalina-galeata complex ( Crustacea: Cladocera). Hydrobiologia 137: 97–115.CrossRefGoogle Scholar
  16. Gliwicz, Z. M. & W. Lampert, 1990. Food thresholds in Daphnia species in the absence and presence of blue-green filaments. Ecology 71: 691–702.CrossRefGoogle Scholar
  17. Hanazato, T. & M. Yasuno, 1985. Effect of temperature in the laboratory studies on growth, egg development and first parturition of five species of Cladocera. Jap. J. Limnol. 46: 185–191.CrossRefGoogle Scholar
  18. Jeppesen, E., J. P. Jensen, M. Söndergaard, T. Lauridsen, L. J. Pedersen & L. Jensen, 1997. Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth. Hydrobiologia 342 /343: 151–164.CrossRefGoogle Scholar
  19. Lampert, W., 1987. Laboratory studies on zooplanktoncyanobacteria interactions. New Zealand J. mar. Freshwat. Res. 21: 483–490.CrossRefGoogle Scholar
  20. Lampert, W., 1988. The relative importance of food limitation and predation in the saesonal cycle of two Daphnia species. Verh. int. Ver. Limnol. 23: 713–718.Google Scholar
  21. Lampert, W. & U. Schober, 1978. Das regelmäßige Auftreten von Frühjahrsalgenmaximum and `Klarwasserstadium’ im Bodensee als Folge von klimatischen Bedingungen and Wechselwirkungen zwischen Phyto-and Zooplankton. Arch. Hydrobiol. 82: 364–386.Google Scholar
  22. Lampert, W., W. Fleckner, H. Rai & B. E. Taylor, 1986. Phytoplankton control by grazing zooplankton: a study on the spring clear-water phase. Limnol. Oceanogr. 31: 478–490.CrossRefGoogle Scholar
  23. LeCren, E. D. & R. H. Lowe-McConnell, 1980. The functioning of freshwater ecosystems. Cambridge University Press, Cambridge.Google Scholar
  24. Lehman, J. T., 1980. Release and cycling of nutrients between planktonic algae and herbivores. Limnol. Oceanogr. 25: 620–632.CrossRefGoogle Scholar
  25. Luecke, C., M. J. Vanni, J. J. Magnuson & J. F. Kitchell, 1990. Seasonal regulation of Daphnia populations by planktivorous fish implications for the spring clear-water phase. Limnol. Oceanogr. 35: 1718–1733.CrossRefGoogle Scholar
  26. Lynch, M., 1980. Aphanizomenon blooms: alternate control and cultivation by Daphnia pulex. In Kerfoot W. C. (ed.), Evolution and Ecology of Zooplankton Communities. University Press of New England, Hanover: 299–304.Google Scholar
  27. Markager, S., B. Hansen & M. Sondergaard, 1994. Pelagic carbon metabolism in a eutrophic lake during clear-water phase. J. Plankton Res. 16: 1247–1267.CrossRefGoogle Scholar
  28. Meijer, M.-L., E. Jeppesen, E. Van Donk, B. Moss, M. Scheffer, E. Lammens, E. Van Nes, J. A. Van Berkum, G. J. de Jong, B. A. Faafeng & J. P. Jensen, 1994. Long-term responses to fish-stock reduction in small shallow lakes: interpretation of five-year results of four biomanipulation cases in The Netherlands and Denmark. Hydrobiologia 275/276: 457–466.CrossRefGoogle Scholar
  29. Müller-Navarra, D. C., S. Guss & H. von Storch, 1997. Interannual variability of seasonal succession events in a temperate lake and its relation to temperature variability. Global Change Biology 3: 429–438.CrossRefGoogle Scholar
  30. Nicklisch, A., 1999. Competition between the cyanobacterium Limnothrix redekei and some spring species of diatoms under P-limitation. Internat. Rev. Hydrobiol. 84: 233–241.Google Scholar
  31. Nixdorf, B & A. Liepelt, 1996. Lichtklima der Gewässer. In Nixdorf B. & A. Kleeberg (eds), Gewässerreport Scharmützelseegebiet, Teil II (in gentian). BTU Cottbus AR 2: 22–28.Google Scholar
  32. Nixdorf, B. & R. Deneke, 1997. Why ‘very shallow’ lakes are more successful opposing reduced nutrient loads. Hydrobiologia 342 /343: 269–284.CrossRefGoogle Scholar
  33. OECD, 1982. Eutrophication of waters. OECD report, Paris.Google Scholar
  34. Porter, K. G., 1976. Enhancement of algal growth and productivity by grazing zooplankton. Science 192: 1332–1334.PubMedCrossRefGoogle Scholar
  35. Reynolds, C. S., 1984. The ecology of freshwater phytoplankton. Cambridge University Press, Cambridge.Google Scholar
  36. Rott, E., 1981. Some results from phytoplankton counting intercalibrations. Schweiz. Z. Hydrol. 43: 34–62.Google Scholar
  37. Sarnelle, O., 1993. Herbivory effects on phytoplankton succession in a eutrophic lake. Ecol. Monogr. 63: 129–149.CrossRefGoogle Scholar
  38. Sas, H., 1989. Lake restoration by reduction of nutrient loading — Expectations, Experiences, Extrapolations. Academia Verlag Richard: 497 pp.Google Scholar
  39. Scheffer, M. & E. Jeppesen, 1998. Alternative stable states. In Jeppesen E., M. Söndergaard, M. Söndergaard & K. Christoffersen (eds), The Structuring Role of Submerged Macrophytes in Lakes. Springer-Verlag, New York: 397–406.Google Scholar
  40. Scheffer, M., S. Rinaldi, Y. A. Kuznetsov & E. H. Van Nes, 1997. Seasonal dynamics of Daphnia and algae explained as a periodically forced predator-prey system. Oikos 80: 519–532.CrossRefGoogle Scholar
  41. Schmitt, M. & B. Nixdorf, 1999. Spring phytoplankton dynamics in a shallow eutrophic lake. Hydrobiologia 408/409: 269–276.CrossRefGoogle Scholar
  42. Sommer, U., Z. M. Gliwicz, W. Lampert & A. Duncan, 1986. The PEG-model of seasonal succession of planktonic events in fresh waters. Arch. Hydrobiol. 106: 433–471.Google Scholar
  43. Sterner, R. W., 1989. The Role of Grazers in Phytoplankton Succession. In Sommer U. (ed.), Plankton Ecology: Succession in Plankton Communities. Springer Verlag, Berlin: 107–170.CrossRefGoogle Scholar
  44. Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplanktonmethodik. Mitt. int. Ver. Limnol. 9: 1–38.Google Scholar
  45. Wiedner, C. & B. Nixdorf, 1998. Success of chrysophytes, chryptophytes and dinoflagellates over blue-greens (cyanobacteria) during an extreme winter (1995/96) in eutrophic shallow lakes. Hydrobiologia 369 /370: 229–235.CrossRefGoogle Scholar
  46. Willén, E., 1976. A simplified method of phytoplankton counting. Br. phytocol. J. 11: 265–278.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Rainer Deneke
    • 1
  • Brigitte Nixdorf
    • 1
  1. 1.Chair of Water ConservationBrandenburg Technical University of CottbusBad SaarowGermany

Personalised recommendations