Diel variation in horizontal distribution of Daphnia and Ceriodaphnia in oligotrophic and mesotrophic lakes with contrasting fish densities

  • Torben L. Lauridsen
  • Erik Jeppesen
  • Stuart F. Mitchell
  • David M. Lodge
  • Romi L. Burks
Part of the Developments in Hydrobiology book series (DIHY, volume 143)


Recent studies document diel horizontal migration by large zooplankton in eutrophic shallow lakes. Risk of predation from planktivorous fishes could induce such behaviour. We studied diel horizontal distribution of cladocerans in 31 mainly shallow oligotrophic and mesotrophic New Zealand (NZ) and North American (NA) temperate lakes. In terms of weight, fish catch per net (CPUE w ) in multiple mesh-sized gill nets was similar in the two sets of lakes, while CPUE by number (CPUE n ) was overall higher in the NA lakes. Unlike previous results from eutrophic, temperate lakes, we found no significant diel variations in density in the pelagic and littoral zones, suggesting no diel horizontal migration of zooplankton. In the NZ lakes, Daphnia and Ceriodaphnia were evenly distributed between the littoral zone and the pelagial, while in the NA lakes Daphnia were more abundant in the pelagial and Ceriodaphnia in the littoral zone. In the oligotrophic fishless NZ lakes, large Daphnia carinata dominated, whereas the smaller Ceriodaphnia dubia dominated in lakes with high CPUE’s. In both the NZ and the NA lakes, Daphnia showed no clear correlation to fish CPUE n . However, in the NA lakes, Daphnia occurred at fish CPUE n values at which they were eliminated in the NZ lakes, which may be related to differences in water transparency, reflecting a higher chlorophyll a and humic content in the NA lakes.

Key words

shallow lakes Daphnia Ceriodaphnia DHM predation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amer, M., S. Koivisto, J. Norberg & N. Kautsky, 1998. Trophic interactions in rockpool foodwebs: regulation of zooplankton and phytoplankton by Notonecta and Daphnia. Freshw. Biol. 39: 79–90.CrossRefGoogle Scholar
  2. Becker, G. C., 1983. Fishes of Wisconsin. The University of Wisconsin Press, Madison.Google Scholar
  3. Boikova, O. S., 1986. Horizontal distribution of crustaceans in Lake Glubokoe. Hydrobiologia 141: 113–123.CrossRefGoogle Scholar
  4. Brooks, J. L. & S. I. Dodson, 1965. Predation, body size and composition of plankton. Science 150: 28–35.PubMedCrossRefGoogle Scholar
  5. Canfield, D. E. Jr., J. V. Shireman, D. E. Colle, W. T. Haller, C. E. Watkins & M. J. Maceina, 1984. Prediction of chlorophyll in Florida lakes: importance of aquatic macrophytes. Can. J. Fish. aquat. Sci. 41: 497–501.CrossRefGoogle Scholar
  6. Davies, J., 1985. Evidence for diurnal horizontal migration in Daphnia hyalina lacustris Sars. Hydrobiologia 120: 103–105.CrossRefGoogle Scholar
  7. DeStasio B. T., Jr., 1993. Diel vertical and horizontal migration by zooplankton: population budgets and the diurnal deficit. Bull. mar. Sci. 53: 44–64.Google Scholar
  8. Dewey, M. R., W. B. Richardson & S. J. Zigler, 1997. Patterns of foraging and distribution of Bluegill sunfish in a Mississippi River backwater — influence of macrophytes and predation. Ecol. Freshwat. Fish. 6: 8–15.CrossRefGoogle Scholar
  9. Dini, M. L. & S. R. Carpenter, 1988. Variability in Daphnia behaviour following fish community manipulations. J. Plankton Res. 10: 621–635.CrossRefGoogle Scholar
  10. Dodson, S. I. & T. Hanazato, 1995. Commentary on effects of anthropogenic and natural organic chemicals on development, swimming behavior and reproduction of Daphnia, a key member of aquatic ecosystems. `Envir. Health Perspect.’ Report number: NIH 95–218, 103, Suppl. 4: 7–11.Google Scholar
  11. Gauthier, S. & D. Boisclair, 1997. The energetic implications of diel onshore-offshore migration by dace (Phoxinus eosxP. neogaeus) in a small oligotrophic lake. Can. J. Fish. aquat. Sci. 54: 19962006.CrossRefGoogle Scholar
  12. Gliwicz, M. Z., 1986. Predation and evolution of vertical migration in zooplankton. Nature 320: 746–748.CrossRefGoogle Scholar
  13. Hall, S.R. & L.G. Rudstam, 1999. Habitat use and recruitment: a comparison of long-term recruitment patterns among fish species in a shallow eutrophic lake, Oneida Lake, NY, U.S.A. Hydrobiologia 408 /409: 101–113CrossRefGoogle Scholar
  14. Hasler, A. & F. Jones, 1949. Demonstration of the antagonistic action of large aquatic plants on algae and rotifers. Ecology 30: 359–364.Google Scholar
  15. Hutchinson, G. E., 1967. A treatise on limnology. II. Introduction to lake biology and the limnoplankton. New York, John Wiley & Sons, Inc: 1115 pp.Google Scholar
  16. Jeppesen, E., T. L. Lauridsen, T. Kairesalo & M. R. Perrow, 1998. Impact of submerged macrophytes on fish-zooplankton interactions in lakes. In Jeppesen, E., Søndergaard, Ma., SOndergaard, Mo. & Christoffersen, K. ( eds ), The Structuring Role of Submerged Macrophytes in Lakes. Springer. Ecol. Stud: 131: 91–114.CrossRefGoogle Scholar
  17. Jeppesen, E., J. R. Jensen, M. SOndergaard, T. Lauridsen, L. J. Pedersen & L. Jensen, 1997a. Top-down control in freshwater lakes, the role of nutrient state, submerged macrophytes and water depth. Hydrobiologia 342 /343: 151–164.CrossRefGoogle Scholar
  18. Jeppesen E., T. L. Lauridsen, S. F. Mitchell & C. Burns, 1997b. Do planktivorous fish structure the zooplankton communities in New Zealand lakes? New Zealand J. mar. Freshwat. Res. 31: 163–173.CrossRefGoogle Scholar
  19. Jeppesen E., T. L. Lauridsen, S. F. Mitchell, K. Christoffersen & C. Burns, submitted. Trophic structure in the pelagial of 25 shallow NZ lakes: changes along a nutrient and fish gradient.Google Scholar
  20. Jespersen, A.-M. & K. Christoffersen, 1987. Measurements of chlorophyll a from phytoplankton using ethanol extraction solvent. Arch. Hydrobiol. 109: 445–454.Google Scholar
  21. Kairesalo, T., 1980. Diurnal fluctuations within a littoral plankton community in oligotrophic Lake Paajarvi, southern Finland. Freshwat. Biol: 533–537.Google Scholar
  22. Kornijow, R. & T. Kairesalo, 1994. Elodea canadensis sustains rich environment for macroinvertebrates. Verh. Int. Ver. Limnol. 25: 2270–2275.Google Scholar
  23. Koroleff, F., 1970. Determination of total phosphorous in natural water by means of the persulphate oxidation. Cons Int Explor Mer, Interlaboratory Report 3.Google Scholar
  24. Lampert, W., 1993. Ultimate causes of diel vertical migration of zooplankton: New evidence for the predator-avoidance hypothesis. Arch. Hydrobiol. Beih. 39: 79–88.Google Scholar
  25. Lauridsen, T. & I. Buenk, 1996: Diel changes in the horizontal distribution of zooplankton in the littoral zone of two shallow eutrophic lakes. Arch. Hydrobiol. 137: 161–176.Google Scholar
  26. Lauridsen, T. & D. M. Lodge, 1996: Avoidance by Daphnia magna of fish and macrophytes: chemical cues and predator-mediated use of macrophyte habitat. Limnol. Oceanogr. 4: 794–798.CrossRefGoogle Scholar
  27. Lauridsen, T., L. J. Pedersen, E. Jeppesen & M. SOndergaard, 1996: The importance of macrophyte bed size for cladoceran composition and horizontal migration in a shallow lake. J. Plankton Res. 18: 2283–2294.CrossRefGoogle Scholar
  28. Murphy, J. & J. P. Riley, 1962. A modified single solution method for determination of phosphate in natural waters. Anal. Chim Acta 27: 21–26.CrossRefGoogle Scholar
  29. Nilsson, N.-A.& B. Pejler, 1973. On the relation between fish fauna and zooplankton composition in North Swedish lakes. Rep. Inst. Freshwat. Res. Drottningholm 53: 51–77.Google Scholar
  30. Paterson, M., 1994. Invertebrate predation and the seasonal dynamics of microcrustacea in the littoral zone of a fishless lake. Arch. Hydrobiol. Suppl. 99: 1–36.Google Scholar
  31. Pennak, R. W., 1973. Some evidence for aquatic macrophytes as repellents for a limnetic species of Daphnia. Int. Revue. ges. Hydrobiol. 58: 569–576.CrossRefGoogle Scholar
  32. Perrow, M. R., A. J. D. Jowitt, J. H. Stansfield & G. L. Phillips. The importance of the interactions between fish, zooplankton and macrophytes in the restoration of shallow lakes. In Harper, D., A. Ferguson, B. Brierley & G. L. Phillips (eds), The Ecological Basis for Lake and Reservoir Management. Kluwer Academic Publishers. (in press)Google Scholar
  33. Scheffer, M., S. H. Hosper, M-L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. Trends Ecol. Evol. 8: 275–279.CrossRefGoogle Scholar
  34. Smiley, E. A. & A. J. Tessier, 1998. Environmental gradients and the horizontal distribution of microcrustaceans in lakes. Freshwat. Biol. 39: 397–409.CrossRefGoogle Scholar
  35. Stansfield, J. H., M. R. Perrow, L. D. Tench, A. J. D. Jowitt & A. A. L. Taylor, 1997. Submerged macrophytes as refuges for grazing Cladocera against fish predation: observations on seasonal changes in relation to macrophyte cover and predation preassure. Hydrobiologia 342 /343: 229–240.CrossRefGoogle Scholar
  36. Segrov, H., A. Hobæk & J. H. L’Abée-Lund, 1996. Vulnerability of melanic Daphnia to brown trout predation. J. Plankton Res. 18: 2113–2118.CrossRefGoogle Scholar
  37. Timms, R. M. & B. Moss, 1984. Prevention of growth of potentially dense phytoplankton populations by zooplankton grazing, in the presence of zooplanktivorous fish, in a shallow wetland ecosystem. Limnol. Oceanogr. 2: 472–486.CrossRefGoogle Scholar
  38. Visman, V., D. J. McQueen & E. Demers, 1994. Zooplankton spatial patterns in two lakes with contrasting fish community structure. Hydrobiologia 284: 177–191.CrossRefGoogle Scholar
  39. Weaver, M. J., J. J. Magnuson & M. K. Clayton, 1997. Distribution of littoral fishes in structurally complex macrophytes. Can. J. Fish. aquat. Sci. 54: 2277–2289.Google Scholar
  40. Wetzel, R., 1983. Limnology. Saunders College Publishing, New York: 767 pp.Google Scholar
  41. Whiteside, M. C., 1988. 0+ fish as major factors affecting abundance and pattems of littoral zooplankton. Verh. Int. Ver. Limnol. 23: 1710–1714.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Torben L. Lauridsen
    • 1
  • Erik Jeppesen
    • 1
  • Stuart F. Mitchell
    • 2
  • David M. Lodge
    • 3
  • Romi L. Burks
    • 3
  1. 1.Department of Lake and Estuarine EcologyNational Environmental Research InstituteSilkeborgDenmark
  2. 2.Department of ZoologyUniversity of OtagoDunedinNew Zealand
  3. 3.Department of Biological SciencesUniversity of Notre DameNotre DameUSA

Personalised recommendations