Plankton dynamics in a river-lake system — on continuity and discontinuity

  • Martin Welker
  • Norbert Walz
Part of the Developments in Hydrobiology book series (DIHY, volume 143)


We studied the plankton dynamics in the shallow, rapidly flushed lake Neuendorfer See and an adjacent reach of the river Spree. During summer/fall, zooplankton and phytoplankton densities increased exponentially in the lake and decreased exponentially in the river without major changes in species composition. Both parts of the system can be described as tubular plug flow reactors that differ markedly in the growth rates of plankton. Whereas reproduction in rotifers was constant in the whole system, the mortality was about 10 times higher in the river compared to the lake caused by the filtration activity of abundant mussels. Physiological conditions can be regarded as continuous in the river-lake system. According to trophic conditions, the river-lake system is divided in two contrasting subsystems with the lake classified as ‘autotrophic’ and the river as ‘heterotrophic’ and the site of discontinuity was located sharply at the lake-river transition. At very low discharges, the differences between the subsystems were reduced and intra-pelagic mechanisms became more important. A model of plankton dynamics in the river-lake system is presented.

Key words

plankton dynamics lowland river River Continuum Concept Serial Discontinuity Concept 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Böhme, M., 1994. Release and consumption of oxygen by a phytoplankton dominated community of a eutrophic lowland river. Verh. int. Ver. Limnol. 25: 1585 – 1589.Google Scholar
  2. Englund, V. P. M. & M. P. Heino, 1996. Valve movement of the freshwater mussel Anodonta anatina: a reciprocal transplant experiment between lake and river. Hydrobiologia 328: 49 – 56.CrossRefGoogle Scholar
  3. Fréchette, M., C. A. Butman & W. R. Geyer, 1989. The importance of boundary-layer flows in supplying phytoplankton to the benthic suspension feeder, Mytilus edulis L. Limnol. Oceanogr. 34: 19 – 26.CrossRefGoogle Scholar
  4. Idrisi, N., 1997. Impact of the zebra mussel (Dreissena polymorpha) on the pelagic lower trophic levels of Oneida Lake, NY. PhD thesis, SUNY College of Environmental Sciences and Forestry, Syracuse, NY.Google Scholar
  5. Jeppesen, E., M. Sondergaard, M. Sondergaard & K. Christoffersen (eds), 1997. The Structuring Role of Submerged Makrophytes in Lakes. Ecological studies 131. Springer, New York.Google Scholar
  6. Kasprzak, K., 1986. Role of Unionidae and Sphaeriidae (Mollusca, Bivalvia) in the eutrophic Lake Zbechy and its outflow. Int. Rev. ges. Hydrobiol. 71: 315 – 334.CrossRefGoogle Scholar
  7. Köhler, J., 1994. Origin and succession of phytoplankton in a river- lake system (Spree, Germany). Hydrobiologia 289: 73 – 83.CrossRefGoogle Scholar
  8. Köhler, J., 1997. Measurement of in situ growth rates of phytoplankton under conditions of simulated turbulence. J. Plankton Res. 19: 849 – 862.CrossRefGoogle Scholar
  9. Lammens, E. H. H. R. & S. H. Hosper, 1998. Het voedselweb van IJsselmeer en Markermeer, trends gradiënten en stuurbaarheid. RIZA report 98.003; Lelystad: 52 pp.Google Scholar
  10. Lair, N. & P. Reyes-Marchant, 1997. The potamoplankton of the Middle Loire and the role of the ‘moving littoral’ in downstream transfer of algae and rotifers. Hydrobiologia 356: 33 – 52.CrossRefGoogle Scholar
  11. Marzolf, G. R., 1990. Reservoirs as environments for zooplankton. In Thornton, K. W., B. L. Kimmel & F. E. Payne (eds), Reservoir Limnology. Wiley & Sons: 195 – 207.Google Scholar
  12. Padisâk, J., 1993. The influence of different disturbance frequencies on the species richness, diversity and equitability of phytoplankton in shallow lakes. Hydrobiologia 249: 135 – 156.CrossRefGoogle Scholar
  13. Reynolds, C. S., J. P. Descy & J. Padisäk, 1994. Are phytoplankton dynamics in rivers so different from those in shallow lakes? Hydrobiologia 289: 1 – 7.Google Scholar
  14. Riisgarrd, H. U., C. Jorgensen & T. Clausen, 1996. Filter-feeding ascidians (Ciona intestinalis) in a shallow cove: implications of hydrodynamics for grazing impact. J. Sea Res. 35: 293 – 300.CrossRefGoogle Scholar
  15. Siefert, J., 1996. Respirations-and Filtrationsraten zweier in der Spree dominierender Großmuschelarten (Anodonta anatina, Unio tumidus, Unionidae) unter Berücksichtigung der Fließgeschwindigkeit. Diploma thesis. Freie Universität Berlin: 126 pp.Google Scholar
  16. Sommer, U., Z. M. Gliwicz, W. Lampert & A. Duncan, 1986. The PEG-model of seasonal succession of planktonic events in fresh waters. Arch. Hydrobiol. 106: 433 – 471.Google Scholar
  17. Scheffer, M., 1998. Ecology of shallow lakes. Chapman & Hall. Statzner, B., 1978. Factors that determine the benthic secondary production in two lake outflows — a cybernetical model. Verh. int. Ver. Limnol. 20: 1517 – 1522.Google Scholar
  18. Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing. 1980. The River Continuum Concept. Can. J. Fish. aquat. Sci. 37: 130 – 137.CrossRefGoogle Scholar
  19. Walz, N. & M. Welker, 1998. Plankton development in a rapidly flushed lake in the river Spree system (Neuendorfer See, Northeast Germany). J. Plankton Res. 20: 2071 – 2087.CrossRefGoogle Scholar
  20. Ward, J. V. & J. A. Stanford, 1995. The Serial Discontinuity Concept: extending the model to floodplain rivers. Regulated Rivers: Res. Mmt 10: 159 Stanford 168.CrossRefGoogle Scholar
  21. Welker, M. & N. Walz, 1998. Can mussels control the plankton in rivers? A planktological study applying a Lagrangian sampling strategy. Limnol. Oceanogr. 43: 753 – 762.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Martin Welker
    • 1
  • Norbert Walz
    • 1
  1. 1.Institut für Gewässerökologie und BinnenfischereiBerlinGermany

Personalised recommendations