Trophic dynamics in turbid and clearwater lakes with special emphasis on the role of zooplankton for water clarity

  • Erik Jeppesen
  • Jens Peder Jensen
  • Martin Søndergaard
  • Torben Lauridsen
Part of the Developments in Hydrobiology book series (DIHY, volume 143)


Within a certain nutrient level shallow lakes may alternate between two states, a clearwater and a turbid state. To obtain more information on the characteristics of these two states, we compared seasonal variations in trophic structure and physico-chemical variables of two clear and two turbid lakes studied during seven or eight years. The clearwater lakes were characterised by a high abundance of submerged macrophytes, high piscivorous:planktivorous fish ratios, high zooplankton:phytoplankton ratios and low chlorophyll a during summer. Submerged macrophytes were almost absent from the turbid lakes, planktivorous fish dominated, the zooplankton:phytoplankton ratio was low and summer chlorophyll a was high. While total phosphorus (TP) was almost constant throughout the season in the clearwater lakes, TP was substantially higher during summer in the turbid lakes reflecting high internal loading. In the clearwater lakes, mean summer chlorophyll a was only 45–51% of winter values, while summer chlorophyll a was 118–259% of winter values in the turbid lakes. Our data suggests that zooplankton, by grazing on phytoplankton, play a major role in maintaining clearwater conditions in eutrophic macrophyte-rich lakes, in particular during summer. In addition, results from a multiple regression on data from 37 lakes and the analyses of the seasonal dynamics in suspended solids provide some evidence that zooplankton grazing diminishes concentrations of detritus and inorganic suspended solids either directly by grazing or more indirectly. Using information also from literature, we argue that the role of zooplankton grazing for water clarity in macrophyte-rich lakes may increase from mesotrophic to eutrophic lakes.

Key words

alternative stable states turbid clearwater macrophytes fish trophic structure bottom-up top-down shallow lakes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barko, J. W. & W. James, 1998. Effects of submerged aquatic macrophytes on nutrient dynamics, sedimentation, and resuspension. In E. Jeppesen, Ma. Søndergaard, M. O. Søndergaard & K. Christoffersen (eds), The structuring Role of Submerged Macrophytes in Lakes. Springer Verlag, New York: 197– 214.Google Scholar
  2. Brooks, J. L. & S. I. Dodson, 1965. Predation, body size and composition of plankton. Science 150: 28 – 35.PubMedCrossRefGoogle Scholar
  3. Buiteveld, H., 1995. A model for calculation of diffuse light attenuation (PAR) and Secchi depth. Neth. J. Aquat. Ecol. 29: 55–65Google Scholar
  4. Canfield, D. E., J. V. Shireman, D. E. Colle, W. T. Haller, C. E. Watkins, & M. J. Maceina, 1984. Prediction of chlorophyll a concentrations in Florida lakes: importance of aquatic macrophytes. Can. J. Fish. aquat. Sci. 44: 497–501.Google Scholar
  5. Carlton, R. G. & R. G. Wetzel, 1988. Phosphorus flux from lake sediments: Effect of epipelic algal oxygen production. Limnol. Oceanogr. 33: 562–570.CrossRefGoogle Scholar
  6. Carpenter, S. R. & D. M. Lodge, 1986. Effects of submersed macrophytes on ecosystem processes. Aquat. Bot. 26: 341–370.CrossRefGoogle Scholar
  7. Christensen, P. B. & J. Sorensen, 1986. Temporal variation of de-nitrification activity in plant-covered littoral sediment from Lake Hampen, Denmark. Apl. envir. Microbiol. 51: 1174–1179.Google Scholar
  8. Diehl, S., 1988. Foraging efficiency of three freshwater fishes: Effects of structural complexity and light. Oikos 53: 207–214.Google Scholar
  9. Dieter, C. D., 1990. The importance of emergent vegetation in reducing sediment resuspension in wetlands. J. Freshwat. Ecol. 5: 467–473.Google Scholar
  10. Edler, L., 1979. Recommendations on methods for marine biological studies in the Baltic Sea. Phytoplankton and chlorophyll. Balt. Mar. Biol. Working Group 9: 38 pp.Google Scholar
  11. Giles, N., M. Street, R. Wright, V. Phillips & A. J. Traill-Stevenson, 1989. Food for wildfowl increases after fish removal. Game Conserv. Ann. Rev. 20: 137–140.Google Scholar
  12. Hansen, A.-M., E. Jeppesen, S. Bosselmann & P. Andersen, 1992. Zooplanktonbed0mmelse i slier — metoder og artskodeliste. 114 pp. Miljpprojekt nr. 205, Hiljgstyrelsen. [In Danish]Google Scholar
  13. Hansson, L.-A., 1989. The influence of a periphytic biolayer on phosphorus exchange between substrate and water. Arch. Hydrobiol. 115: 21–26.Google Scholar
  14. Hansson, L.-A., H. Annadotter, E. Bergman, S.F. Hamrin, E. Jeppesen, T. Kairesalo, E. Luokkanen, P-A, Nilsson, M. Sondergaard & J. Strand, 1998. Biomanipulation as an application of food chain theory: constraints, synthesis and recommendations for temperate lakes. Ecosystems 1: 558 – 574.CrossRefGoogle Scholar
  15. Hovmand, M. F., L. Grundahl, E. M. Runge, K. K. Kemp & W. Aistrup, 1993. Atmosfzerisk deposition of kvælstof og fosfor. (Atmospheric deposition of nitrogen and phosphorus) — Fag-fig rapport fra DMU nr. 91. Danmarks Miljqundersogelser. [In Danish]Google Scholar
  16. Jasser, I., 1995. The influence of macrophytes on a phytoplankton community in experimental conditions. Hydrobiologia 306: 2132.CrossRefGoogle Scholar
  17. Jeppesen, E., 1998. The ecology of shallow lakes - trophic interactions in the pelagial. DSc-dissertation. National Environmental Research Institute, Silkeborg, Denmark. NERI Technical Report no. 247: 420 pp.Google Scholar
  18. Jeppesen, E., M. Spndergaard, M. Spndergaard & K. Christoffersen, eds., 1998. The structuring role of submerged macrophytes in lakes. Ecological Studies Series. Springer Verlag. 423 pp.Google Scholar
  19. Jeppesen, E., J. P. Jensen, M. Sondergaard, T. Lauridsen, L. J. Pedersen & L. Jensen, 1997. Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth. Hydrobiologia 342/343: 151–164.Google Scholar
  20. Jeppesen, E., M. Sondergaard, E. Kanstrup, B. Petersen, R. B. Henriksen, M. Hammershoj, E. Mortensen, J. P. Jensen & A. Have, 1994. Does the impact of nutrients on the biological structure and function of brackish and freshwater lakes differ? Hydrobiologia 275 /276: 15 – 30.CrossRefGoogle Scholar
  21. Jeppesen, E., M. Sondergaard, E. Mortensen, P. Kristensen, B. Riemann, H. J. Jensen, J. P. Müller, O. Sortkjær, J. P. Jensen, K. Christoffersen, S. Bosselmann & E. Dall, 1990. Fish manipulation as a lake restoration tool in shallow, eutrophic temperate lakes 1: cross-analysis of three Danish case-studies. Hydrobiologia 200 /201: 205 – 218.CrossRefGoogle Scholar
  22. Kirk, K. L., 1991. Inorganic particles alter competition in grazing plankton: the role of selective feeding. Ecology 72: 915 – 923.CrossRefGoogle Scholar
  23. Kirk, K. L. & J. J. Gilbert, 1990. Suspended clay and the population dynamics of planktonic rotifers and cladocerans. Ecology 71: 1741 – 755.Google Scholar
  24. Kristensen, P., M. Sündergaard & E. Jeppesen, 1992. Resuspension in a shallow eutrophic lake. Hydrobiologia 228: 101 – 109.CrossRefGoogle Scholar
  25. Lauridsen, T., L. J. Pedersen, E. Jeppesen & M. Sondergaard, 1996. The importance of macrophyte bed size for cladoceran composition and horizontal migration in a shallow lake. J. Plankton Res. 18: 2283 – 2294.CrossRefGoogle Scholar
  26. Luecke, C., M. J. Vanni, J. J. Magnuson, J. F. Kitchell & P. J. Jacobson, 1990. Seasonal regulation of Daphnia populations by planktivorous fish: Implications for the clearwater phase. Limnol. Oceanogr. 35: 1718–1733.CrossRefGoogle Scholar
  27. Mehner, T., H. Schultz & R. Herbst, 1995. Interaction of zooplankton dynamics and diet of 0+ perch (Perca fluviatilis L.) in top-down manipulataed Bautzen Reservoir (Saxony, Germany) during summer. Limnologica 25: 1–9.Google Scholar
  28. Meijer, M.-L., I. De Boois, M. Scheffer, Portielje & H. Hosper, 1999. Biomanipulation in the Netherlands: an evaluation of 18 case studies in shallow lakes. Hydrobiologia. 408/409: 13 – 30.CrossRefGoogle Scholar
  29. Meijer, M-L., E. Jeppesen, E. van Donk, B. Moss, M. Scheffer, E. Lammens, E. van Nes, J. A. Berkum, G. J. De Jong, B. A. Faafeng & J. P. Jensen, 1994. Long-term responses to fish stock reduction in small shallow lakes: interpretation of five year results of four biomanipulation cases in the Netherlands and Denmark. Hydrobiologia 275/276: 233 – 242.CrossRefGoogle Scholar
  30. Meijer, M.-L., E. H. R. R. Lammens, A. J. R. Raat, J. P. G. Klein Breteler & M. P. Grimm, 1995. Development of fish communities in lakes after biomanipulation. Neth. J. Aquat. Ecol. 29: 91–101.CrossRefGoogle Scholar
  31. Moss, B., 1990. Engineering and biological approaches to the restoration from eutrophication of shallow lakes in which aquatic plant communities are important components. Hydrobiologia 200/201: 367 – 378.CrossRefGoogle Scholar
  32. Moss, B., J. Madgwick & G. Phillips, 1997. A guide to the restoration of nutrient-rich shallow lakes. Broads Authority, Norwich: 180 pp.Google Scholar
  33. Moss, B., J. Stansfield, K. Irvine, M. Perrow & G. Phillips, 1996. Progressive restoration of a shallow lake — a twelve-year experiment in isolation, sediment removal and biomanipulation. J. appl. Ecol. 33: 71–86.CrossRefGoogle Scholar
  34. OECD, 1982. Eutrophication of waters. Monitoring, assessments and control. OECD, Paris. 210 pp.Google Scholar
  35. Perrow, M. R., A. J. D. Jowitt, J. H. Stansfield & G. L. Phillips, 1999. The importance of the interactions between fish, zooplankton and macrophytes in the restoration of shallow lakes. In D. Harper, A. Ferguson, B. Brierley & G.L. Phillips (eds), The Ecological Basis for Lake and Reservoir Management. Hydrobiologia. 408/409: 85 – 100.Google Scholar
  36. Perrow, M. R., B. Moss & J. Stansfield, 1994. Trophic interactions in a shallow lake following a reduction in nutrient loading: a long-term study. Hydrobiologia 275/276: 43 – 52.CrossRefGoogle Scholar
  37. Persson, L., 1991. Behavioral response to predators reverses the outcome of competition between prey species. Behay. Ecol. Sociobiol. 28: 101–105.Google Scholar
  38. Persson, L. & P. Eklöv, 1995. Prey refuges affecting interactions between piscivorous perch and juvenile perch and roach. Ecology 76:763–784.CrossRefGoogle Scholar
  39. Persson, L., G. Anderson, S.F. Hamrin & L. Johansson, 1988. Predation regulation and primary production along the productivity gradient of temperate lake ecosystems. In S. R. Carpenter (ed.), Complex Interactions in Lake Communities. Springer Verlag, New York: 45–65.CrossRefGoogle Scholar
  40. Phillips, G. L., M. R. Perrow & J. Stansfield, 1996. Manipulating the fish-zooplankton interaction in shallow lakes: a tool for restoration. In S. P. R. Greenstreet & M. L. Tasker (eds), Aquatic Predators and their Prey. Oxford: Blackwell Scientific Publications: 174 – 183.Google Scholar
  41. Reynolds, C. S., 1984. The ecology of freshwater phytoplankton. Cambridge University Press. Cambridge: 384 pp.Google Scholar
  42. Rott, E., 1981. Some results from phytoplankton counting intercalibrations. Schweiz. Z. Hydrol. 43: 34–62.Google Scholar
  43. Scheffer, M., 1990. Multiplicity of stable states in freshwater systems. Hydrobiologia 200 /201: 475 – 486.CrossRefGoogle Scholar
  44. Scheffer, M., 1998. Ecology of shallow lakes. Chapman & Hall, London. 357 pp.Google Scholar
  45. Scheffer, M., H. Hosper, M.-L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. Trends Ecol. Evol. 8: 275–279.PubMedCrossRefGoogle Scholar
  46. Schriver, P., J. BOgestrand, E. Jeppesen & M. SOndergaard, 1995. Impact of submerged macrophytes on the interactions between fish, zooplankton and phytoplankton: large-scale enclosure experiments in a shallow lake. Freshwat. Biol. 33: 255–270.CrossRefGoogle Scholar
  47. Stansfield, J. H., M. R. Perrow, L. D. Tench, A. J. D. Jowitt & A. A. L. Taylor, 1997. Submerged macrophytes as refuges for grazing Cladocera against fish predation: observations on seasonal changes in relation to macrophyte cover and predation pressure. Hydrobiologia 342/343: 229 – 240.CrossRefGoogle Scholar
  48. SOndergaard, M., J. P. Jensen & E. Jeppesen, 1999. Internal phosphorus loading in shallow Danish lakes. Hydrobiologia 408/409: 145 – 152.CrossRefGoogle Scholar
  49. Søndergaard, M. & B. Moss, 1998. Impact of submerged macrophytes on phytoplankton in shallow freshwater lakes. In E. Jeppesen, Ma. SOndergaard, Mo. SOndergaard and K. Christoffersen (eds), The Structuring Role of Submerged Macrophytes in Lakes. Ecological Studies Series 131: 115–132, Springer, New York.Google Scholar
  50. Søndergaard, M., E. Jeppesen & J. P. Jensen, 1998. SOrestaurering i Danmark: metoder, erfaringer og anbefalinger. (Lake restoration in Denmark: methods, experiences and recommendations). Miljpstyrelsen, Miljdnyt 28, 289 pp. [in Danish].Google Scholar
  51. Søndergaard, M., E. Jeppesen, E. Mortensen, E. Da11, P. Kristensen & O. Sortkjrer, 1990. Phytoplankton biomass reduction after planktivorous fish reduction in a shallow, eutrophic lake: A combined effect of reduced internal P-loading and increased zooplankton grazing. Hydrobiologia 200/201: 229–240.Google Scholar
  52. Timms, R. M. & B. Moss, 1984. Prevention of growth of potentially dense phytoplankton populations by zooplankton grazing, in the presence of zooplanktivorous fish, in a shallow wetland ecosystem. Limnol. Oceanogr. 29: 472–486.CrossRefGoogle Scholar
  53. Ütermöhl H., 1958. Zur Vervollkomnung der quantitativen Phytoplankton-Methodik. Mitt. int. Ver. Limnol. 9: 1–38.Google Scholar
  54. Van den Berg, M. S., H. Coops, M.-L. Meijer, M. Scheffer & J. Simons, 1997. Clear water associated with a dense Chara vegetation in the shallow and turbid lake Veluwemeer, The Netherlands. In E. Jeppesen, Ma. SOndergaard, Mo. SOndergaard & K. Christoffersen (eds), The Structuring Role of Submerged Macrophytes in Lakes. Ecological Studies Series. New York: Springer Verlag: 339 – 352.Google Scholar
  55. Van Luijn, F., D. T. Van der Molen, W. J. Luttmer & P. C. M. Boers, 1995. Influence of benthic diatoms on the nutrient release from sediments of shallow lakes recovering from eutrophication. Wat. Sci. Tech. 32: 89–97.Google Scholar
  56. Vollenweider, R. A., 1976. Advance in defining critical loading levels for phosphorus in lake eutrophication. Mem. Ist. ital. Idrobiol. 33: 53–83.Google Scholar
  57. Weisner, S., G. Eriksson, W. Granéli, & L. Leonardson, 1994. Influence of macrophytes on nitrate removal in wetlands. Ambio 23: 363– 366.Google Scholar
  58. Winberg, G. G., (ed.), 1971. Symbols, units and conversion factors in studies of freshwater productivity. International Biological Programme, London: 23 pp.Google Scholar
  59. Winfield, I. J., 1986. The influece of simulated aquatic macrophytes on the zooplankton consumption rate of juvenile roach, Rutilus rutilus, rudd, Scardinius erythrophthalmus and perch, Perca fluviatilis. J. Fish. Biol. 29: 37–48.CrossRefGoogle Scholar
  60. Wium-Andersen, S., U. Anthoni, C. Christophersen & G. Houen, 1982. Allelophatic effects on phytoplankton by substances isolated from aquatic macrophytes Charales. Oikos 39: 187 – 190.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Erik Jeppesen
    • 1
  • Jens Peder Jensen
    • 1
  • Martin Søndergaard
    • 1
  • Torben Lauridsen
    • 1
  1. 1.Department of Lake and Estuarine EcologyNational Environmental Research InstituteSilkeborgDenmark

Personalised recommendations