Advertisement

The zoobenthic community of shallow salt pans in Austria — preliminary results on phenology and the impact of salinity on benthic invertebrates

  • Georg Wolfram
  • Karl Donabaum
  • Michael Schagerl
  • Verena A. Kowarc
Chapter
  • 347 Downloads
Part of the Developments in Hydrobiology book series (DIHY, volume 143)

Abstract

A three-year project on the benthic community of salt pans (shallow saline lakes) in the Seewinkel area of Eastern Austria has been carried out since 1996. Most of the salt pans investigated are very shallow (mean depth mostly < 0.5 m), highly alkaline and inorganically turbid. Salinity ranged from 1.6 to 4.5 g 1−1 in 1996 and 1997, but reached its highest values (> 50 g 1−1) during the dry summer of 1998. A comparison of the benthic community in 20 salt pans at two sampling dates in 1997 revealed a negative relationship between salinity and species richness of Oligochaeta and benthic Crustacea. However, the decline of diversity was observed at salinity values much lower that those reported in the literature for most benthic invertebrates. It is thus doubtful whether or not salinity has in fact directly affected the benthic community in the salt pans of Seewinkel. Rather, it is suggested that biotic interactions controlled by changes in the hydrochemical situation are responsible for the reduction in diversity of the benthic community. Actual experiments or more detailed data on changes over a full gradient of salinity will be necessary to attribute changes in the species composition of benthic invertebrates to any environmental impact with certainty. The phenology of benthic invertebrates in Unterstinker, a sub-to hyposaline (0.5–20 g 1−1) salt pan studied in greater detail, was distinctly influenced by the development of submerged macrophytes. Abundances of chironomids and crustaceans, the two dominant major benthic groups, were high only in June and July, when Charophyceae had stabilized the lake bottom and prevented further erosion of fine sediments. Substrate characteristics and the abundance of macrophytes appeared to determine the seasonal development of the benthic community as long as the ion concentration remains low (< 3 g 1–1).

Key words

zoobenthos Oligochaeta Crustacea saline lake phenology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alonso, M., 1990. Anostraca, Cladocera and Copepoda of Spanish saline lakes. Hydrobiologia 197: 221–231.CrossRefGoogle Scholar
  2. Beattie, D. M., 1982. Distribution and production of the larval chironomid populations in Tjeukemeer. Hydrobiologia 95: 287–306.CrossRefGoogle Scholar
  3. Brinkhurst, R. O. & S. R. Gelder, 1991. Annelida: Oligochaeta and Branchiobdellida. In J. H. Thorp & A. P. Covich (eds), Ecology and Classification of North American Freshwater Invertebrates. Chapter 12, Academic Press, Inc.Google Scholar
  4. Comín, F. A., X. Rodó & M. Menéndez, 1993. Spatial heteogencity of macrophytes in Lake Gallocanta ( Aragón, NE Spain). Hydrobiologia 267: 169–178.CrossRefGoogle Scholar
  5. Donabaum, K., M. Schagerl & M. Dokulil, 1999. Integrated management to restore macrophyte domination. Hydrobiologia in press.Google Scholar
  6. Evans, M. S. & J. A. Stewart, 1977. Epibenthic and benthic micro-crustaceans (copepods, cladocerans, ostracods) from a nearshore area in Southeastern Lake Michigan. Limnol. Oceanogr. 22: 1059–1066.CrossRefGoogle Scholar
  7. Frey, D. G., 1993. The penetration of cladocerans into saline waters. Hydrobiologia 27: 233–248.CrossRefGoogle Scholar
  8. Garcia, C. M. & F. X. Niell, 1993. Seasonal change in a saline temporary lake ( Fuente de Piedra, southern Spain ). Hydrobiologia 267: 211–223.CrossRefGoogle Scholar
  9. Green, J., 1993. Zooplankton associations in East African lakes spanning a wide salinity range. Hydrobiologia 267: 249–256.CrossRefGoogle Scholar
  10. Hammer, U. T., J. S. Sheard & J. Kranabetter, 1990. Distribution and abundance of littoral benthic fauna in Canadian prairie saline lakes. Hydrobiologia 197: 173–192.CrossRefGoogle Scholar
  11. Hammer, U. T., 1986. Saline lake ecosystems of the world. Dr W. Junk Publishers, Dordrecht: 616 pp.Google Scholar
  12. Hargeby, A., I. Blindow & L. Gezelius, 1998. Development of plankton, water chemistry and submerged vegetation during a shift to turbid conditions in Lake Tâkern, Sweden. Abstract International Conference `Shallow Lakes 1998’, Berlin, p. 53..Google Scholar
  13. Herbst, D. B., 1988. Comparative population ecology of Ephydra hians Say (Diptera: Ephydridae) at Mono Lake (California) and Abert Lake ( Oregon ). Hydrobiologia 158: 145–166.CrossRefGoogle Scholar
  14. Hödl, W. & E. Eder (eds), 1996. Urzeitkrebse Österreichs. Stapfia 42: 170 pp.Google Scholar
  15. Hustedt, F., 1959. Die Diatomeenflora des Salzlackengebietes im österreichischen Burgenland. Sitz.ber. Ostern Akad. Wiss. 168 /14: 388–452.Google Scholar
  16. Jónasson, P. M. & C. Lindegaard, 1979. Zoobenthos and its contribution to the metabolism of shallow lakes. Arch. Hydrobiol. Beih. ( Ergebn. Limnol. ) 13: 162–180.Google Scholar
  17. Jungwirth, M., 1973. Populationsdynamik und Produktionsrate von Branchinecta orientalis (Crustacea, Anostraca) in der Birnbaum-lacke (Seewinkel, Burgenland), unter besonderer Berücksichtigung der limnologischen Bedingungen dieses Gewässers. Ph.D. thesis, University of Vienna.Google Scholar
  18. Krachler, R., 1992. Beiträge zu Chemismus und Wasserhaushalt der Lacken des burgenländischen Seewinkels. PhD. Thesis, University of Vienna: 86 pp.Google Scholar
  19. Löffler, H., 1957. Vergleichende limnologische Untersuchungen an den Gewässern des Seewinkels (Burgenland). I. Der winterliche Zustand der Gewässer und deren Entomostrakenfauna. Verh. zool.-bot. Ges. Wien 97: 27–52.Google Scholar
  20. Löffler, H., 1959. Zur Limnologie, Entomostraken-und Rotatorienfauna des Seewinkelgebietes (Burgenland, Osterreich). Sitzungsber. Osten. Akad. Wiss., Abt. I, 168, 315 ff.Google Scholar
  21. Mason, C. F., 1977. Populations and productions of benthic animals in two contrasting shallow lakes in Norfolk. J. anim. Ecol. 46: 147–172.CrossRefGoogle Scholar
  22. Melack, J. M., 1988. Primary producers dynamics associated with evaporative concentration in a shallow, equatorial soda lake ( Lake Elmenteita, Kenya). Hydrobiologia 158: 1–14.CrossRefGoogle Scholar
  23. Metz, H. & L. Forró, 1989. Contributions to the knowledge of the chemistry and crustacean zooplankton of sodic waters: the Seewinkel pans revisited. BFB-Bericht 70: 73 pp.Google Scholar
  24. Metz, H. & L. Forró, 1991. The chemistry and crustacean zooplankton of the Seewinkel pans: a review of recent conditions. Hydrobiologia 210: 25–38.CrossRefGoogle Scholar
  25. Moroz, T. R., 1977. Oligochaetes of the estuarine zone of the North- West tributaries of the Black Sea. Hydrobiol. J. 13: 14–18.Google Scholar
  26. Newrkla, P., 1974. Populationsdynamik, Produktion und Respiration von Arctodiaptomus spinosus (Daday) in einem alkalischen Kleingewässer (Birnbaumlacke, Zickenlackengebiet, Burgenland). PhD. thesis, University of Vienna.Google Scholar
  27. Remane, A. & C. Schlieper, 1971. Biology of brackish water. Schweitzerbart’sche Verlagsbuchhandlung, Stuttgart.Google Scholar
  28. Riedl, H., 1965. Beiträge zur Morphogenese des Seewinkels. Wiss. Arb. Bgld. 34: 5–28.Google Scholar
  29. Santamarfa, L., J. Balsa, B. Bidondo, A. Baltanäs & C. Montes, 1992. Salinity tolerance of three ostracode species ( Crustacea: Ostracoda) of Iberian saline lakes. Hydrobiologia 246: 89–98.CrossRefGoogle Scholar
  30. Schall, S., 1990. Einfluß von Temperatur und Salzgehalt auf das Überleben typischer Cladoceren aus den Sodalacken des Seewinkels. Masters thesis, University of Vienna: 65 pp.Google Scholar
  31. Schiemer, 1979. Submerged macrophytes in the open lake. Distribution pattern, production and long term changes. In H. Löffler (ed.), Neusiedler See: The Limnology of a Shallow Lake in Central Europe. Dr W. Junk by Publ., The Hague–Boston–London, Monogr. Biol. 37: 235–250.Google Scholar
  32. Steiner, K.-H., 1994. Hydrogeologische Untersuchungen zur Beurteilung des Wasserhaushaltes ausgewählter Salzlacken im Seewinkel ( Burgenland ). Master thesis University of Vienna: 92 pp.Google Scholar
  33. Stundl, K., 1949. Wasser und Plankton der Zicklacken im Seewinkel am Ostufer des Neusiedlersees. Bgld. Heimatblätter 11 /1: 1–12.Google Scholar
  34. Swanson, S. M. & U. T. Hammer, 1983. Production of Cricotopus ornatus (Meigen) (Diptera: Chironomidae) in Waldsea Lake, Saskatchewan. Hydrobiologia 105: 155–164.CrossRefGoogle Scholar
  35. Timms, B. V., 1983. A study of benthic communications in some shallow saline lakes of western Victoria, Australia. Hydrobiologia 105: 165–177.CrossRefGoogle Scholar
  36. Timms, B. V., 1993. Saline lakes of the Paroo, inland New South Wales, Australia. Hydrobiologia 267: 269–289.CrossRefGoogle Scholar
  37. Tudorancea, C., R. M. Baxter & C. H. Fernando, 1989. A comparative limnological study of zoobenthic associations in lakes of the Ethiopian Rift Valley. Arch. Hydrobiol. Suppl. 83 (Monographische Beiträge) 2: 121–174.Google Scholar
  38. Verdonschot, P. F. M., M. Smies & A. B. J. Sepers, 1982. The distribution of aquatic oligochaetes in brackish inland waters in the SW Netherlands. Hydrobiologia 89: 29–38.CrossRefGoogle Scholar
  39. Wendelberger, G., 1959. Die Vegetation des Neusiedler See-Gebietes. Sitzungsber. Ostern. Akad. Wiss. Math.-nat. KI., Abt. I, 168: 305–314.Google Scholar
  40. Wetzel, R. G., 1983. Limnology, 2nd Edn. Saunders College Publ., Fort Worth — Philadelphia — San Diego: 767 pp.Google Scholar
  41. Williams, W. D., 1993. The worldwide occurrence and limnological significance of falling water-levels in large, permanent saline lakes. Verh. int. Ver. Limnol. 25: 980–983.Google Scholar
  42. Williams, W. D., A. J. Boulton & R. G. Taaffe, 1990. Salinity as a determinant of salt lake fauna: a question of scale. Hydrobiologia 197: 257–266.CrossRefGoogle Scholar
  43. Winnel, M. H. & D. J. Jude, 1984. Associations among Chironomidae and sandy substrates in nearshore Lake Michigan. Can. J. Fish. aquat. Sci. 41: 174–179.CrossRefGoogle Scholar
  44. Wolfram, G., 1996. Distribution and production of chironomids (Diptera: Chironomidae) in a shallow, alkaline lake ( Neusiedler See, Austria). Hydrobiologia 318: 103–115.CrossRefGoogle Scholar
  45. Wurtsbaugh, W. A. & T. S. Berry, 1990. Cascading effects of decreased salinity on the plankton, chemistry, and physics of the Great Salt Lake (Utah). Can. J. Fish. aquat. Sci. 47: 100–109.CrossRefGoogle Scholar
  46. Zoufal, W., E. Mikschi, & A. Herzig, 1989. Beiträge zur Rotatrorienfauna des Seewinkels. BFB-Bericht 71: 17–186.Google Scholar
  47. Zulka, K. P. & N. Milasowszky, 1998. Conservation problems in the Neusiedler See — Seewinkel National Park, Austria: an arachnological perspective. In P. A. Selden (ed.), Proceedings of the 17th European Colloquium of Arachnology, Edinburgh 1997 pp. 331–336.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Georg Wolfram
    • 1
  • Karl Donabaum
    • 1
  • Michael Schagerl
    • 2
  • Verena A. Kowarc
    • 3
  1. 1.Donabaum & Wolfram OEGViennaAustria
  2. 2.Institute of Plant PhysiologyUniversity of ViennaViennaAustria
  3. 3.Arge ÖkologieViennaAustria

Personalised recommendations