Surficial sediment composition as a record of environmental changes in the catchment of shallow Lake Petersdorf, Brandenburg, Germany

  • Andreas Kleeberg
  • Doris Jendritzki
  • Brigitte Nixdorf
Part of the Developments in Hydrobiology book series (DIHY, volume 143)


A chemical characterization of the surficial sediment (0–20 cm) of type ‘dy’ (org-Cpart/TNpart> 10) of the anthropogenically polluted shallow Lake Petersdorf is presented. Eighty samples were analyzed for a set of parameters, i.e. dry weight, loss on ignition (LOI), total inorganic carbon (TIC), N, S, P, Ca, Si, As, Fe, Al, Mn, Zn, Cd, and Pb. LOI, TIC, N, S, Ca, P, and Zn tend to accumulate at a water depth >2 m (70.6% of the lake surface) in contrast to Mn and Fe which are more widely distributed, and Cd and Pb which are accumulated in the lake part close to a road. The enrichment factors of certain elements, e.g. Al (23.9%), Si (31.5%), P (12.2%), and Ca (68.7%) from 20 cm sediment depth up to the surface, are attributed to incisive changes in the immediate catchment. Erosion, fertilization, amelioration, and separation of the peatland north of the lake by a dam within the last 60 yrs resulted in the change of Lake Petersdorf from a dystrophic to a eutrophic stage. This enhanced the mineralization of its meso-humic (LOI/TNpart=20.6) sediment.

Key words

shallow lake sediment dy phosphorus calcium metals 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, N. J., B. Rippey & C. E. Gibson, 1993. A comparison of sedimentary and diatom-inferred phosphorus profiles: implications for defining pre-disturbance nutrient conditions. Hydrobiologia 253: 357–366.CrossRefGoogle Scholar
  2. Battiston, G. A., S. Degetto, R. Gerbasi, G. Sbrignadello & L. Tositti, 1987. Self-absorption correction for low energy gamma rays: application to 21°Pb determination in marine sediments. Nucl. Instr. Meth. B, 28: 438–442.CrossRefGoogle Scholar
  3. Boström, B., M. Jansson & G. Forsberg, 1982. Phosphorus release from lake sediments. Arch. Hydrobiol. Beih. Ergebn. Limnol. 18: 5–59.Google Scholar
  4. Carignan, R. & R. J. Flett, 1981. Postdepositional mobility of phosphorus in lake sediments. Limnol. Oceanogr. 26: 361–366.CrossRefGoogle Scholar
  5. Engstrom, D. R. & H. E. Wright, 1984. Chemical stratigraphy of lake sediments as a record of environmental change. In E. Y. Haworth & J. W. G. Lund (eds), Lake Sediments and Environmental History. Leicester University, Leicester: 11–69.Google Scholar
  6. Farmer, J. G., 1994. Environmental change and the chemical record in Loch Lomond sediments. Hydrobiologia 290: 39–49.CrossRefGoogle Scholar
  7. Foster, I. D. L. & D. E. Walling, 1994. Using reservoir deposits to reconstruct changing sediment yields and sources in the catchment of the Old Mill Reservoir, South Devon, UK, over the past 50 years. Hydrol. Scs. 39: 347–368.CrossRefGoogle Scholar
  8. Gächter, R., A. Tessier, E. Szabo, & R. Carignan, 1992. Measurements of total dissolved phosphorus in small volumes of iron rich interstitial water. Aquat. Scs. 54: 1–9.CrossRefGoogle Scholar
  9. Golterman, H. L., 1984. Sediments, modifying and equilibrating factors in the chemistry of freshwater. Verh. int. Ver. Limnol. 22: 23–59.Google Scholar
  10. Gorham, E., J. W. G. Lund, J. E. Sanger & W. E. Dean, 1974. Some relationship between algal standing crop, water chemistry and sediment chemistry in the English lakes. Limnol. Oceanogr. 19: 601–617.CrossRefGoogle Scholar
  11. Hakanson, L., 1984. On the relationship between lake trophic level and lake sediments. Wat. Res. 18: 303–314.CrossRefGoogle Scholar
  12. Heathwaite, A. L., 1994. Chemical fractionation of lake sediments to determine the effects of land-use change on nutrient loading. J. Hydrol. 159: 395–421.CrossRefGoogle Scholar
  13. Hölting, B., 1996. Einführung in die Allgemeine and Angewandte Hydrogeologie, 5. Edition, Ferdinand Enke Verlag Stuttgart: 441 pp.Google Scholar
  14. Januskiewicz, T., 1980. Chemical composition of recent bottom sediments of Lake Zagnanie. Acta Hydrobiol. 2: 157–178.Google Scholar
  15. Jendritzki, D., 1996. Untersuchungen zur saisonalen Nährstoffdynamik im Frei-and Interstitialwasser Ostbrandenburger Seen. Diploma Thesis, Faculty of Environmental Sciences, Technical University Cottbus: 93 pp.Google Scholar
  16. Jeppesen, E., P. Kristensen, J. P. Jensen, M. Sondergaard, E. Mortensen & T. Lauridsen, 1991. Recovery resilience following a reduction in external phosphorus loading of shallow, eutrophic lakes: Duration, regulating factors and methods for overcoming resilience. Mem. Ist. ital. Idrobiol. 48: 127–148.Google Scholar
  17. Kiesewetter, G., 1996. Bad Saarow-Pieskow am Märkischen Meer. Kur-and Fremdenverkehrs-GmbH: 128 pp.Google Scholar
  18. Lijklema, L., 1994. Nutrient dynamics in shallow lakes: effects of changes in loading and role of sediment-water interactions. Hydrobiologia 275 /276: 335–348.CrossRefGoogle Scholar
  19. Marcinek, J., 1966. Die Entstehung der Seen im nördlichen Teil der Deutschen Demokratischen Republik. Zeitschrift für den Erdkundeunterricht 10: 361–369.Google Scholar
  20. Mitchell, M. J., M. B. David & A. J. Uutala, 1985. Sulfur distribution in lake sediment profiles as an index of historical depositional patterns. Hydrobiologia 121: 121–127.Google Scholar
  21. Pettersson, K. & H. Olsson, 1986. Mobility and fractional composition of phosphorus in the sediments of oligotrophic non-acidified and limed lakes. In K. Hendriksen (ed.), 12th Nordic Symp. on Sediments, Skallingen, Denmark: 13–35.Google Scholar
  22. Phillips, G., R. Jackson, C. Bennett & A. Chilvers, 1994. The importance of sediment phosphorus release in the restoration of very shallow lakes (The Norfolk Broads, England) and implications for biomanipulation. Hydrobiologia 275 /276: 445–456.CrossRefGoogle Scholar
  23. Principi, C., R. Baudo & H. Muntau, 1994. Spatial and temporal heterogeneity of Lake Lugano sediment composition. Aquat. Scs. 56: 243–262.CrossRefGoogle Scholar
  24. Rucker, J., C. Wiedner & P. Zippel, 1997. Factors controlling the dominance of Planktothrix agardhii and Limnothrix redekei in eutrophic shallow lakes. Hydrobiologia 342 /343: 107–115.CrossRefGoogle Scholar
  25. Rzepecki, M., 1997. Bottom sediments in a humic lake with artificially increased calcium content: sink or source for phosphorus? Wat. Air Soil Pollut. 99: 457–464.Google Scholar
  26. Wetzel, R. G., 1983. Limnology, Saunders College Publishing (2nd edn): 767 pp.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Andreas Kleeberg
    • 1
  • Doris Jendritzki
    • 2
  • Brigitte Nixdorf
    • 1
  1. 1.Brandenburg Technical University of CottbusBad SaarowGermany
  2. 2.Water Authority — District Spree/NeißeForstGermany

Personalised recommendations