Comparison of phosphorus release from littoral and profundal sediments in a shallow, eutrophic lake

  • Frede Ø. Andersen
  • Peter Ring
Part of the Developments in Hydrobiology book series (DIHY, volume 143)


The release of phosphorus (P) and iron (Fe) was studied in undisturbed sediment cores from littoral and profundal sediments of shallow, eutrophic Lake Arreskov (Denmark). The cores were incubated for 100 days in darkness under oxic and anoxic conditions at 12 and 19 °C and cumulative fluxes of P and Fe were determined. The littoral sediment showed higher P release than the profundal sediment under both oxic and anoxic conditions, however, the difference was only significant during the first 35 days under anoxic conditions. The release rates of P and Fe were significantly higher under anoxic than under oxic conditions. Sequential extractions of P-fractions in sediment from different depths (0–15 cm) were conducted before and after the experiment. Under anoxic conditions, iron-bound P was the most important fraction for the loss of P from both sediments. The decrease in the iron-bound P pool contributed 54% and 86% of the loss of total particulate P (TPSed) from littoral and profundal sediments under anoxic conditions, respectively, whereas it under oxic conditions only constituted 25% of the TPSed lost from the littoral sediment. Organic P accounted for 31 and 55% of the TPSed lost from the littoral sediment under anoxic and oxic conditions, respectively, while organic P was unimportant (< 1%) for the loss of TPSed from the profundal sediment under anoxic conditions. This indicates that littoral sediments may contribute significantly to the internal P loading, especially if low O2 concentrations occur at the sediment-water interface.

Key words

internal loading iron oxic anoxic temperature macrophyte 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersen, F. & H. S. Jensen, 1992. Regeneration of inorganic phosphorus and nitrogen from decomposition of seston in a freshwater sediment. Hydrobiologia 228: 71 – 81.CrossRefGoogle Scholar
  2. Andersen, F. & K. R. Olsen, 1994. Nutrient cycling in shallow, oligotrophic Lake Kvie, Denmark. II: Effects of isoetids on the exchange of phosphorus between sediment and water. Hydrobiologia 275/276: 267-276.Google Scholar
  3. Blindow, I., 1992. Long-and short-term dynamics of submerged macrophytes in two shallow eutrophie lakes. Freshwat. Biol. 28: 15–27.Google Scholar
  4. Boström, B., J. M. Andersen, S. Fleischer #xamp hasis>; M. Jansson, 1988. Exchange of phosphorus across the sediment-water interface. Hydrobiologia 170: 229 - 244.CrossRefGoogle Scholar
  5. Carignan, R. & R. J. Flett, 1981. Postdepositional mobility of phosphorus in lake sediments. Limnol. Oceanogr. 26: 361-366.CrossRefGoogle Scholar
  6. Christensen, K. K. & F. 0. Andersen, 1996. Influence of Lit-torella uniflora on phosphorus retention in sediment supplied with artificial porewater. Aquat. Bot. 55: 183–197.CrossRefGoogle Scholar
  7. Christensen, K. K., F. O. Andersen & H.S. Jensen, 1997. Comparison of iron, manganese and phosphorus retention in freshwater littoral sediment with growth of Littorella unifloraand benthic microalgae. Biogeochemistry 38: 149 - 171.CrossRefGoogle Scholar
  8. Crawford, S. A., 1977. Chemical, physical and biological changes associated with Chara succession in farm ponds. Hydrobiologia 55: 209 - 217CrossRefGoogle Scholar
  9. Frodge, J. D., G. L. Thomas & G. B. Pauley, 1991. Sediment phosphorus loading beneath dense canopies of aquatic macrophytes. Lake Reserv. Mgmt. 7: 61-71.Google Scholar
  10. Golterman, H. L., 1998. The distribution of phosphate over ironbound and calcium-bound phosphate in stratified sediments. Hydrobiologia 364: 75 - 81.CrossRefGoogle Scholar
  11. Granéli, W. & D. Solander, 1988. Influence of aquatic macrophytes on phosphorus cycling in lakes. Hydrobiologia 170: 245 - 266.CrossRefGoogle Scholar
  12. Howard-Williams, C. & B. R. Allanson, 1981. Phosphorus cycling in a dense Potamogeton pectinatus L. bed. Oecologia 49: 56 - 66.CrossRefGoogle Scholar
  13. James, W. F. & J. W. Barko, 1991a. Estimation of phosphorus exchange between littoral and pelagic zones during nighttime convective circulation. Limnol. Oceanogr. 36: 179-187.CrossRefGoogle Scholar
  14. James, W. F. & J. W. Barko, 1991b. Littoral-pelagic phosphorus dynamics during nighttime convective circulation. Limnol. Oceanogr. 36: 949-960.Google Scholar
  15. Jensen, H. S. & F. Ø. Andersen, 1992. Importance of temperature, nitrate and pH for phosphate release from aerobic sediments of four shallow, eutrophic lakes. Limnol Oceanogr. 37: 577 - 589.CrossRefGoogle Scholar
  16. Jensen, H. S., P. Kristensen, E. Jeppesen & A. Skytthe, 1992. Iron:phosphorus ratio in surface sediment as an indicator of phosphate release from aerobic sediments in shallow lakes. Hydrobiologia 235 /236: 731 - 743.CrossRefGoogle Scholar
  17. Jensen, H. S. & B. Thamdrup, 1993. Iron-bound phosphorus in marine sediments as measured by bicarbonate-dithionite extraction. Hydrobiologia 253: 47 - 59.CrossRefGoogle Scholar
  18. Kamp-Nielsen, L., 1974. Mud-water exchange of phosphate and other ions in undisturbedsediment cores and factors affecting the exchange rates. Arch. Hydrobiol. 73: 218-237.Google Scholar
  19. Kairesalo, T. & T. Matilainen, 1994. Phosphorus fluctuation in water and deposition into sediment within an emergent macrophyte stand. Hydrobiologia 275 /276: 285 - 292.CrossRefGoogle Scholar
  20. Koroleff, F., 1983. Determination of nutrients. In K. Grasshof, M. Ehrhardt & K. Kremling (eds.), Methods of Seawater Analysis. Verlag Chemie, Weinheim, New York: 125 - 139.Google Scholar
  21. Nürnberg, G. K., 1987. Prediction of phosphorus release rates from total and reductant-soluble phosphorus in anoxic lake sediments. Can. J. Fish. aquat. Sci. 45: 453-462.Google Scholar
  22. Petterson, K. & V. Istvanovics, 1988. Sediment phosphorus in Lake Balaton - forms and mobility. Arch. Hydrobiol. Beih. Ergebn. Limnol. 30: 25-41.Google Scholar
  23. Pereyra-Ramos, E., 1981. The ecological role of Characeae in the lake littoral. Ekol. pol. 29: 167 - 209.Google Scholar
  24. Psenner, R., B. Boström, M. Dinka, K. Petterson, R. Pucsko M. Sager, 1988. Fractionation of phosphorus in suspended matter and sediment. Arch. Hydrobiol. Fractionation of phosphorus in suspended matter and sediment. Arch. Hydrobiol. Beih. Ergebn. Limnol. 30: 43–59.Google Scholar
  25. Stephen, D., B. Moss & G. Phillips, 1997. Do rooted macrophytes increase sediment phosphorus release? Hydrobiologia 342 /343: 27 - 34.CrossRefGoogle Scholar
  26. Williams, J. D. H. & T. Mayer, 1972. Effects of sediment diagenesis and regeneration of phosphorus with special reference to lakes Eire and Ontario, In H. E. Allen & J. R. Kramer (eds), Nutrients in Natural Waters, J. Wiley & Sons, NY: 281 - 315.Google Scholar
  27. Williams, J. D. H., J.-M Jaquet & R. L. Thomas, 1976. Forms of phosphorus in the surficial sediments of Lake Erie. J. Fish Res. Bd Can. 33: 413-429.CrossRefGoogle Scholar
  28. Wetzel, R. G., 1990. Detritus, macrophytes and nutrient cycling in lakes. Mem. Ist. ital. Idrobiol. 47: 233-249.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Frede Ø. Andersen
    • 1
  • Peter Ring
    • 1
  1. 1.Institute of BiologyOdense UniversityOdense MDenmark

Personalised recommendations