Advertisement

Horizontal distribution of sediment phosphorus in shallow eutrophic Lake Võrtsjärv (Estonia)

  • Peeter Nõges
  • Anu Kisand
Chapter
  • 347 Downloads
Part of the Developments in Hydrobiology book series (DIHY, volume 143)

Abstract

Effective wind fetch and lake width in the dominating wind direction accounted for 87% of the observed spatial variability of sediment dry weight in large (270 km2), shallow (mean depth 2.8 m) eutrophic Lake VOrtsjArv, Estonia. Focusing of lighter sediments to more sheltered bottom areas was reflected also in the horizontal distribution of sediment phosphorus forms which correlated strongly (R 2 from 0.72 to 0.96) with the dry matter content of the surficial 10 cm sediment. Loosely bound (NH4C1-RP), Fe- and Al-bound (NaOH-RP), and organic phosphorus (NaOH-NRP) revealed strong positive intercorrelation (r 2 from 0.72 to 0.87). Ca-bound phosphorus (HCl-RP) correlated negatively with the three former fractions. In contrast to the other fractions, CH1-RP correlated better with general sediment characteristics, such as dry weight, bulk density and loss on ignition, when volumetric concentrations were used. Relatively constant HCl-RP content per dry weight in sediments of different grain size suggests that Ca-bound phosphorus was included in the particle matrix, apatite probably forming its major part. As apatite belongs to a heavier crystalline fraction, it is more resistant to resuspension. Therefore, HCl-RP was the overwhelming form of phosphorus in erosion areas, where its volumetric concentration was up to 30 times higher than in organic-rich soft sediments.

Key words

lake morphometry wind fetch sediment phosphorus fractionation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahl, T. 1988. Background yield of phosphorus from drainage area and atmosphere: An empirical approach. Hydrobiologia 170:35–44CrossRefGoogle Scholar
  2. Andersen, F. Ø & E. Lastein, 1981 Sedimentation and resuspension in shallow, eutrophic Lake Arreskov, Denmark. Verh. int. Ver. Ver. Limnol. 21:425–430Google Scholar
  3. Bengtsson, L., T. Hellstrom & L. Rakoczi, 1990. Redistribution of sediments in three Swedish lakes. Hydrobiologia 192: 167–181.CrossRefGoogle Scholar
  4. Behrendt, H. & B. Nixdorf, 1993. The carbon balance of phytoplankton production and loss processes based on in situ measurements in a shallow lake. Int. Rev. ges. Hydrobiol. 78: 439–458.Google Scholar
  5. Boström, B., M. Jansson & C. Forsberg, 1982. Phosphorus release from lake sediments. Arch. Hydrobiol. Beih. Ergebn. Limnol. 18: 5–59.Google Scholar
  6. G. Persson, 1988. Particulate and dissolved phosphorus forms in freshwater: composition and analysis. Hydrobiologia 170: 61–90.CrossRefGoogle Scholar
  7. Enell, M. & S. Löfgren, 1988. Phosphorus in interstitial water: methods and dynamics. Hydrobiologia 170: 103–132.CrossRefGoogle Scholar
  8. Gons, H. J., R. Veeningen & R. van Keulen, 1986. Effects of wind on a shallow lake ecosystem: resuspension of particles in the Loosdrecht Lakes. Hydrobiol. Bull. 20: 109–120.CrossRefGoogle Scholar
  9. Hieltjes, A. H. M. & L. Lijklema, 1980. Fractionation of inorganic phosphates in calcareous sediments. J. envir. Qual. 9: 405–407.CrossRefGoogle Scholar
  10. Holtan, H., L. Kamp-Nielsen & A. O. Stuanes, 1988. Phosphorus in soil, water and sediment: an overview. Hydrobiologia 170: 19–34.Google Scholar
  11. Kivimaa, R., T. Huttula & V. Podsetchine, 1998. Hydrodynamical studies. In T. Huttula Nöges (eds), Present State and Future Fate of Lake Vörtsjärv. The Finnish Environment: 209: 60–78.Google Scholar
  12. Kamp-Nielsen, L., 1983. A sediment-water exchange model for lakes in the Upper Nile Basin. In D. M. Dubois (ed. ), Progress in Ecological Engineering and Management by Mathematical Modelling, Ed. Cebedoc, Liege: 557–582.Google Scholar
  13. Marsden, M. W., 1989. Lake restoration by reducing external phosphorus loading: the influence of sediment phosphorus release. Freshwat. Biol. 21: 139–162.CrossRefGoogle Scholar
  14. Murphy, J 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27: 31–36.Google Scholar
  15. Nöges, P.1999. Primary production, sedimentation and resuspension in large shallow Lake Vörtsjärv. Aquat. Sci. 61: 168–182CrossRefGoogle Scholar
  16. Ostrofsky, M. L., 1987. Phosphorus species in the surficial sediments of lakes of eastern North America. Can. J. Fish. aquat. Sci. 44: 960–966.CrossRefGoogle Scholar
  17. Pettersson, K., 1986. The fractional composition of phosphorus in lake sediments of different characteristics. In P. G. Sly (ed.), Sediments and Water Interactions. Springer-Verlag, Berlin: 149–155.Google Scholar
  18. Pettersson, K., B. Jacobsen, 1988. Phosphorus in sediments–speciation and analysis. Hydrobiologia 170: 91–101.Google Scholar
  19. Pettersson, K. & V. Istvänovics, 1988. Sediment phosphorus in Lake Balaton — forms and mobility. Arch. Hydrobiol. Beih. Ergebn. Limnol. 30: 25–41.Google Scholar
  20. Raukas, A. (ed.) 1995. Estonia. Nature. Valgus, Tallinn: 606 pp.Google Scholar
  21. SOndergaard, M., P. Kristensen & E. Jeppesen, 1992. Phosphorus release from resuspended sediment in the shallow and wind-exposed Lake Arreso, Denmark. Hydrobiologia 228: 91–99.CrossRefGoogle Scholar
  22. Starast, H., 1982. Fosfaadi-ja nitraadisisalduse dUnaamika seaduspArasused VOrtsjArve vesikonnas. In H. Simm (ed.), Eesti NSV jArvede nUUdisseisund. Tartu: 26–31.Google Scholar
  23. Veber, K., 1973. Pöhjasetete geoloogiast ja levikust. In T. Timm (ed.), VOrtsJArv. Valgus. Tallinn: 33–36.Google Scholar
  24. Wetzel, R. G., 1975. Limnology. Saunders, Philadelphia - London - Toronto: 743 pp.Google Scholar
  25. Williams, J. D. H., J.-M. Jaquet & R. L. Thomas, 1976. Forms of phosphorus in the surficial sediments of Lake Erie. J. Fish Res. Bd Can. 33: 413–429.CrossRefGoogle Scholar
  26. Wisniewski, R., 1995. The regulatory role of sediment resuspension in seston and phosphorus dynamics in shallow Lake Druzno. Proc. 6th Internat. Conf. on the Conservation and Management of Lakes–Kasumigaura ‘85: 917–920.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Peeter Nõges
    • 1
  • Anu Kisand
    • 2
  1. 1.Võrtsjärv Limnological Station, Institute of Zoology and BotanyEstonian Agricultural UniversityRannu, Tartu countyEstonia
  2. 2.Institute of Zoology and HydrobiologyTartu UniversityEstonia

Personalised recommendations