The N and P budget of the shallow, flushed lake Müggelsee: retention, external and internal load

  • Hans-Peter Kozerski
  • Horst Behrendt
  • Jan Köhler
Part of the Developments in Hydrobiology book series (DIHY, volume 143)


The shallow (mean depth 4.9 m), polymictic and eutrophic lake Müggelsee was highly loaded with phosphorus (6 gP m−2 a−1) and nitrogen (170 gN m−2 a−1) by the river Spree up to the end of the 1980s. Annual load declined by 40–50% during the last years (1991–97). Phosphorus retention fluctuated strongly during the seasonal cycle between −200 and +100 kgP d−1 and from year to year between −44% and + 26% of the P import. At the end of the eighties, the P retention capacity of the sediment was exceeded and Müggelsee became a source of phosphorus. The lake regained its ability to retain P in the sediments after external load reduction in the 1990s. However, the internal load of P reached the level of the external one. The release of P during summer was strongly related to the import of nitrate. On long-term average (1979–1997), less than 1% of the P input was retained in Müggelsee. About 24% of the nitrogen load were removed in the lake on annual mean. This rate decreased during the last years.

Key words

shallow lake nutrient loading retention nitrogen phosphorus release 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Behrendt, H., E. Driescher & G. Schellenberger, 1990. Lake Müggelsee — The use of lake water and its consequences. GeoJournal 22: 175 – 183.Google Scholar
  2. Behrendt, H., B. Nixdorf & W. Pagenkopf, 1993. Phenomenological description of polymixis and influence on oxygen budget and phosphorus release in Lake Mügelsee. Int. Rev. ges. Hydrobiol. 78: 411–422.CrossRefGoogle Scholar
  3. Behrendt, H. & D. Opitz, 1996. Güteklassenbezogene Zielvorgaben zur Nährstoffreduzierung im Berliner Gewässersystem. Berichte des IGB, Heft 1: 27–91.Google Scholar
  4. Busch, K. F. (ed.), 1965. Ingenieurtaschenbuch Bauwesen. Band III: Boden — Wasser — Verkehr. B.G. Teubner Verlagsgesell. Leipzig.Google Scholar
  5. Driescher, E., H. Behrendt, G. Schellenberger & R. Stellmacher, 1993. Lake Müggelsee and its environment — natural conditions and anthropogenic impacts. Int. Rev. ges. Hydrobiol. 78: 327—343.CrossRefGoogle Scholar
  6. Dudel G. & J.-G. Kohl, 1992. The nitrogen budget of a shallow lake (Grosser Mueggelsee, Berlin). Int. Rev. ges. Hydrobiol. 77: 43—72.CrossRefGoogle Scholar
  7. Eyrich, A., 1980. Limnogeologische Untersuchungen in Berliner Gewässern zur Ermittlung der Verteilung rezenter und subrezenter Sedimente und deren Bedeutung für die Uferfiltration. PhD Thesis, Humboldt-Universität Berlin: 99 pp.Google Scholar
  8. Gelbrecht, J., E. Zwirnmann & E. Driescher, 1991. Zur Phosphatbestimmung im Grundwasser. Acta hydrochim. hydrobiol. 19: 133 – 139.CrossRefGoogle Scholar
  9. Jensen J. P., E. Jeppesen, P. Kristensen, P. B. Christensen & M. Sondergaard, 1992. Nitrogen loss and denitrifikation as studied in relation to reductions in nitrogen loading in a shallow hypertrophic lake ( Lake Sobygard, Denmark). Int. Rev. ges. Hydrobiol. 77: 29–42.CrossRefGoogle Scholar
  10. Kleeberg, A. & H. P. Kozerski, 1997. Phosphorus release in Lake Großer Müggelsee and its implications for lake restoration. Hydrobiologia 342 /343: 9 – 26.CrossRefGoogle Scholar
  11. Kozerski, H. P., J. Gelbrecht & R. Stellmacher, 1993. Seasonal and long term variability of nutrients in Lake Müggelsee. Int. Rev. ges. Hydrobiol. 78: 423–437.CrossRefGoogle Scholar
  12. Kozerski, H. P. & A. Kleeberg, 1998. The sediments and benthicpelagic exchange in the shallow lake Müggelsee ( Berlin, Germany). Int. Rev. ges. Hydrobiol. 83: 77–112.CrossRefGoogle Scholar
  13. Murphy, J. & J. P. Riley, 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. chim. acta 27: 31 – 36.CrossRefGoogle Scholar
  14. Schellenberger, G., 1981. Hydrologie und Ökologie des Müggelsees. Geogr. Ber. 99: 115–122.Google Scholar
  15. Vogler, P., 1976. Analysenautomation in Wasserlaboratorien mit flow-stream Automaten. Teil 5: Die automatische Bestimmung von Eisen im Wasser. Acta hydrochim. hydrobiol. 4: 115–127.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Hans-Peter Kozerski
    • 1
  • Horst Behrendt
    • 1
  • Jan Köhler
    • 1
  1. 1.Institute of Freshwater Ecology and Inland FisheriesBerlinGermany

Personalised recommendations