Skip to main content

The Chemistry of Sandy Beach Ecosystems — A Review

  • Conference paper
Book cover Sandy Beaches as Ecosystems

Part of the book series: Developments in Hydrobiology ((DIHY,volume 19))

Abstract

Much of the chemical information on sandy beaches which can be found in the literature has been gained incidentally as part of biological or ecological studies. As such it is widely dispersed and fragmentary. There have been very few studies on the chemistry per se of sandy beaches. This immediately forces us to ask the question, “What is the role of the chemist in sandy beach ecology?”. Indeed we may even ask the more basic question, “Does the chemist have a role to play in sandy beach ecology?”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aller RC (1980) Diagenetic processes near the sediment-water interface of Long Island Sound. II. Fe and Mn. Adv. in Geophys. 22, 351–415.

    Article  CAS  Google Scholar 

  • Ansell AD, McLusky DS, Stirling A and Trevallion A (1978) Production and energy flow in the macrobenthos of two sandy beaches in south west India. Proc. Roy. Soc. Edinburgh 76B, 269–296.

    Google Scholar 

  • Bailey RA, Clark HM, Ferris JP, Krause S and Strong RL (1978) Chemistry of the environment. New York, Academic Press, p 371.

    Google Scholar 

  • Billen G (1978) A budget of nitrogen recycling in North Sea sediments off the Belgian coast. Estuar. Coast. Mar. Sci. 7, 127–146.

    Article  CAS  Google Scholar 

  • Bölter M, Meyer-Reil L-A, Dawson R, Liebezeit G, Wolter K and Szwerinski H. (1981) Structure analysis of shallow water ecosystems: interaction of microbiological, chemical and physical characteristics measured in the overlying waters of sandy beach sediments. Estuar. Coast. Shelf Sci. 13, 579–589.

    Article  Google Scholar 

  • Boucher G and Chamroux S (1976) Bacteria and meiofauna in an experimental sand ecosystem. I. Material and preliminary results. J. exp. mar. Biol. Ecol. 24, 237–249.

    Article  Google Scholar 

  • Bray JT, Bricker OP and Troup BD (1973) Phosphate in interstitial water of anoxic sediments: oxidation effects during sampling procedures. Science 180, 1362–1364.

    Article  PubMed  CAS  Google Scholar 

  • Brezonik PL (1977) Denitrification in natural waters. Prog. Wat. Tech. 8 (4/5), 373–392.

    CAS  Google Scholar 

  • Buresh RJ and Patrick WH Jr (1981) Nitrate reduction to ammonium and organic nitrogen in an estuarine sediment. Soil Biol. Biochem. 13, 279–283.

    CAS  Google Scholar 

  • Butler ET and Tibbitts S (1972) Chemical survey of the Tamar estuary. I. Properties of the waters. J. mar. biol. Ass. U K 52, 681–699.

    Article  CAS  Google Scholar 

  • Cauwet G (1981) Non-living particulate matter. In: Duursma EK, Dawson R, eds., Marine organic chemistry, pp 71–89, New York, Elsevier.

    Google Scholar 

  • Chapman PM (1981) Measurement of the short-term stability of interstitial salinities in subtidal estuarine sediments. Estuar. Coast. Shelf Sci. 12, 67–81.

    Article  Google Scholar 

  • Chiaudani G and Vighi M (1982). Multistep approach to identification of limiting nutrients in northern Adriatic eutrophied coastal waters. Water Res. 16 (7) 1161–1166.

    Article  CAS  Google Scholar 

  • Dale NG (1974) Bacteria in intertidal sediments: factors related to their distribution. Limnol. Oceanogr. 19(3), 509-518.

    Google Scholar 

  • DeLaune RD, Reddy CN and Patrick WH Jr (1981) Effect of pH and redox potential on concentration of dissolved nutrients in an estuarine sediment. J. Environ. Qual. 10 (3), 276–279.

    Article  CAS  Google Scholar 

  • Dugdale RC, Goering JJ and Ryther JH (1964) High nitrogen fixation rates in the Sargasso Sea and the Arabian Sea. Limnol. Oceanogr. 9, 507–510.

    Google Scholar 

  • Dugdale RC and Goering JJ (1967) Uptake of new and regenerated forms of nitrogen in primary production. Limnol. Oceanogr. 12, 196–206.

    Article  CAS  Google Scholar 

  • Dye AH (1979) Measurement of biological oxygen demand in sandy beaches. S. Afr. J. Zool. 14, 55–60.

    Google Scholar 

  • Dye AH (1980) Tidal fluctuations in biological oxygen demand in exposed sandy beaches. Estuar. Coast. Mar. Sci. 11, 1–8.

    Article  Google Scholar 

  • Dye AH (1981) A study of benthic oxygen consumption on exposed sandy beaches. Estuar. Coast. Shelf Sci. 13, 671–680.

    Article  Google Scholar 

  • Edmondson WT (1970) Phosphorus, nitrogen and algae in Lake Washington after diversion of sewage. Science 169, 690–691.

    Article  PubMed  CAS  Google Scholar 

  • Farke H and Riemann F (1980) Dissolved organic carbon in littoral sediments: concentrations and available amounts demonstrated by the percolation method. Veröff. Inst. Meeresforsch. Bremerh. 18, 235–244.

    Google Scholar 

  • Fenchel TM and Riedl RJ (1970). The sulfide system: a new biotic community underneath the oxidized layer of marine sand bottoms. Mar. Biol. 7, 255–265.

    Article  CAS  Google Scholar 

  • Fricke AH, Eagle GA, Gledhill WJ, Greenwood PJ and Orren MJ (1979) Preliminary pollution surveys around the south-western Cape coast. Part 3, Hout Bay. S. Afr. J. Sci. 75, 459–461.

    Google Scholar 

  • Froelich PN, Bender ML, Luedtke NA, Heath GR and De Vries T (1982) The marine phosphorus cycle. Am. J. Sci. 282 (4), 474–511.

    Article  CAS  Google Scholar 

  • Gillespie PA and MacKenzie AL (1981) Autotrophic and heterotrophic processes on an intertidal mud-sand flat, Delaware Inlet, Nelson, New Zealand. Bull. Mar. Sci. 31 (3). 648–657.

    CAS  Google Scholar 

  • Goering JJ, Dugdale RC and Menzel DW (1966) Estimates of in situ rates of nitrogen uptake by Trichodesmium sp. in the tropical Atlantic Ocean. Limnol. Oceanogr. 11, 614–620.

    Google Scholar 

  • Goreau TJ, Kaplan WA, Wofsy SC, McElroy MB, Valois FW and Watson SW (1980) Production of NO2- and N20 by nitrifying bacteria at reduced concentrations of oxygen. Appl. Environ. Microbiol. 40 (3), 526–532.

    PubMed  CAS  Google Scholar 

  • Griffiths CL and Stenton-Dozey J (1981) The fauna and rate of degradation of stranded kelp. Estuar. Coast. Shelf Sci. 12(6), 645–653.

    Google Scholar 

  • Hanson RB (1982) Organic nitrogen and calorie content of detritus. II: Microbial biomass and activity. Estuar. Coast. Shelf Sci. 14, 325–336.

    Article  CAS  Google Scholar 

  • Hargrave BT (1972) Aerobic decomposition of sediment and detritus as a function of particle surface area and organic content. Limnol. Oceanogr. 17 (4), 583–596.

    Article  CAS  Google Scholar 

  • Hennig HF-KO, Fricke AH and Martin CT (1983) The effect of meiofauna and bacteria on nutrient cycles in sandy beaches. This volume.

    Google Scholar 

  • Johannes RE (1969) Nutrient regeneration in lakes and oceans. In: Droop MR and Wood EJF, eds. Advances in the microbiology of the sea, Vol.]. pp 203–212, New York, Academic Press.

    Google Scholar 

  • Jorgensen BB (1977) The sulphur cycle of a coastal marine sediment (Limfjorden Denmark). Limnol. Oceanogr. 22 (5), 814–832.

    Article  Google Scholar 

  • Koop K and Carter RA (1982) Mannitol-fermenting bacteria as evidence for export from kelp beds. Limnol. Oceanogr. 27 (5), 950–954.

    Article  Google Scholar 

  • Koop K and Field JG (1980) The influence of food availability on population dynamics of a supra-littoral isopod, Ligia dilatata Brandt. J. exp. mar. Biol. Ecol. 48, 61–72.

    Article  Google Scholar 

  • Koop K and Griffiths CL (1982) The relative significance of bacteria, meio-and macrofauna on an exposed sandy beach. Mar. Biol. 66, 295–300.

    Article  Google Scholar 

  • Koop K, Newell RC and Lucas MI,(1982a) Biodegradation and carbon flow based on kelp (EckZonia maxima) debris in a sandy beach microcosm. Mar. Ecol. Progr. Ser. 7, 315–326.

    Google Scholar 

  • Koop K, Newell RC and Lucas MI (1982b) Microbial regeneration of nutrients from the decomposition of macrophyte debris on the shore. Mar. Ecol. Progr. Ser. 9, 91–96.

    Google Scholar 

  • Lewin J, Eckman JE and Ware GN (1979) Blooms of surf-zone diatoms along the coast of the Olympic Peninsula, Washington. XI. Regeneration of ammonium in the surf environment by the Pacific razor clam Siliqua patula. Mar. Biol. 52, 1–9.

    Google Scholar 

  • Lewin J, Hruby T and Mackas D (1975) Blooms of surf-zone diatoms along the coast of the Olympic Peninsula, Washington. V. Environmental conditions associated with the blooms (1971 and 1972 ). Estuar. Coast. Mar. Sci. 3, 229–241.

    Google Scholar 

  • Liss PS (1976) Conservative and non-conservative behaviour of dissolved constituents during estuarine mixing. In: Burton JD and Liss PS, eds. Estuarine chemistry, pp. 93–130, London, Academic Press.

    Google Scholar 

  • McCarthy JJ, Taylor WR and Taft JL (1975) The dynamics of nitrogen and phosphorus cycling in the open waters of Chesapeake Bay. In: Church TM, ed. Marine chemistry in the coastal environment, pp 664–681, Washington, American Chemical Society.

    Chapter  Google Scholar 

  • McIntyre AD, Munro ALS and Steele JH (1970) Energy flow in a sand ecosystem. In: Steele JH, ed. Marine food chains, pp 19–31, Edinburgh, Oliver and Boyd.

    Google Scholar 

  • McLachlan A (1977) Studies on the psammolittoral meiofauna of Algoa Bay, South Africa. I. Physical and chemical evaluation of the beaches. Zool. Africana 12 (1), 15–32.

    CAS  Google Scholar 

  • McLachlan A (1978) A quantitative analysis of the meiofauna and the chemistry of the redox potential discontinuity zone in a sheltered sandy beach. Estuar. Coast. Mar. Sci. 7, 275–290.

    Article  Google Scholar 

  • McLachlan A (1979) Volumes of sea water filtered through eastern Cape sandy beaches. S. Afr. J. Sci. 75, 75–79.

    Google Scholar 

  • McLachlan A (1980) The definition of sandy beaches in relation to exposure: a simple rating system. S. Afr. J. Sci. 76, 137–138.

    Google Scholar 

  • McLachlan A (1980–81) Exposed sandy beaches as semi-enclosed ecosystems. Mar. Environm. Res. 4, 59–63.

    Google Scholar 

  • McLachlan A (1982) A model for the estimation of water filtration and nutrient regeneration by exposed sandy beaches. Mar. Environm. Res. 6, 37–47.

    Article  Google Scholar 

  • McLachlan A, Dye A and Harty B (1981b) Simulation of the interstitial system of exposed sandy beaches. Estuar. Coast. Shelf Sci. 12, 267–278.

    Google Scholar 

  • McLachlan A, Dye AH and van der Ryst P (1979) Vertical gradients in the fauna and oxidation of two exposed sandy beaches. S. Afr. J. Zool. 14, 43–47.

    Google Scholar 

  • McLachlan A, Erasmus T, Dye AH, Wooldridge T, van der Horst G, Rossouw G, Lasiak TA and McGwynne L (1981a) Sand beach energetics: an ecosystem approach towards a high energy interface. Estuar. Coast. Shelf Sci. 13, 11–25.

    Google Scholar 

  • Mevel G and Chamroux S (1981) An experimental study of the regulation of nitrification in marine sediments. Oceanologica Acta 4 (4), 457–463.

    CAS  Google Scholar 

  • Meyer-Reil L-A (1978) Uptake of glucose by bacteria in the sediment. Mar. Biol. 44, 293–298.

    Article  Google Scholar 

  • Meyer-Reil L-A, Bölter M, Dawson R, Liebezeit G, Szwerinski H and Wolter K (1980) Interrelationships between microbiological and chemical parameters of sandy beach sediments, a summer aspect. Appl. Environ. Micro. 39 (4), 797–802.

    CAS  Google Scholar 

  • Munro ALS, Wells JBJ and McIntyre AD (1978) Energy flow in the flora and meiofauna of sandy beaches. Proc. Roy. Soc. Edinburgh 76B, 297–315.

    Google Scholar 

  • Nedwell DB (1982) Exchange of nitrate, and the products of bacterial nitrate reduction, between seawater and sediment from a UK saltmarsh. Estuar. Coast. Shelf Sci. 14, 557–566.

    Article  CAS  Google Scholar 

  • Newell RC, Lucas MI, Velimirov B and Seiderer LJ (1980) Quantitative significance of dissolved organic losses following fragmentation of kelp (EckZonia maxima and Laminaria pallida). Mar. Ecol. Progr. Ser. 2, 45–59.

    Google Scholar 

  • Nienhuis PH (1981) Distribution of organic matter in living marine organisms. In: Duursma EK and Dawson R, eds. Marine organic chemistry, pp 31–69, New York, Elsevier.

    Google Scholar 

  • Nishio T, Koike I and Hattori A (1982) Denitrification, nitrate reduction, and oxygen consumption in coastal and estuarine sediments. Appl. Environ. Micro. 43 (3), 648–653.

    CAS  Google Scholar 

  • Nixon SW (1981) Remineralisation and nutrient cycling in coastal marine ecosystems. In: Nielson BJ and Cronin LE, eds. Nixon SW, pp. 111–138, Humana Press.

    Google Scholar 

  • Oliff WD, Berrisford CD, Turner WD, Ballard JA and McWilliam DC (1967a). The ecology and chemistry of sandy beach and nearshore submarine sediments of Natal. I. Pollution criteria for sandy beaches in Natal. Water Res. 1, 115–129.

    Google Scholar 

  • Oliff WD, Berrisford CD, Turner WD, Ballard JA and McWílliam DC (1967b). The ecology and chemistry of sandy beaches and nearshore submarine sediments of Natal. II. Pollution criteria for sandy beaches in Natal. Water Res. 1, 131–146.

    Google Scholar 

  • Oliff WD, Gardner BD, Turner WD and Sharp JB (1970) The chemistry of the interstitial waters as a measure of conditions in a sandy beach. Water Res. 4, 179–188.

    Article  CAS  Google Scholar 

  • Orren MJ, Eagle GA, Fricke AH, Gledhill WJ, Greenwood PJ and Hennig H F-K O (1981a) The chemistry and me.iofauna of some unpolluted sandy beaches in South Africa. Water S.A. 7 (4), 203–210.

    CAS  Google Scholar 

  • Painter HA (1970) A review of literature on inorganic nitrogen metabolism in micro-organisms. Water Res. 4, 393–450.

    Article  CAS  Google Scholar 

  • Patrick WH and Khalid RA (1974) Phosphate release and sorption by soils and sediments: effect of aerobic and anaerobic conditions. Science 186, 53–55.

    Article  PubMed  CAS  Google Scholar 

  • Pugh KB (1975) A model beach system. J. exp. mar. Biol. Ecol. 18, 197–213.

    Article  CAS  Google Scholar 

  • Pugh KB (1976) An annual cycle, at constant temperature, in a model sandy beach. I. Nutrient chemistry. J. exp. mar. Biol. Ecol. 22, 179–192.

    Article  CAS  Google Scholar 

  • Pugh KB, Andrews AR, Gibbs CF, Davis SJ and Floodgate GD (1974) Some physical, chemical and microbiological characteristics of two beaches of Anglesey. J. exp. mar. Biol. Ecol. 15, 305–333.

    Google Scholar 

  • Quinlan AV, Lewis T and Hoyt JK (1983) Fouling of the sandy beaches of Nahant Bay (Massachusetts, USA) by an abnormal free-living form of the macroalga Pilayella littoralis (Phaeophyta). I. Habitat characteristics. This volume.

    Google Scholar 

  • Raine RCT and Patching JW (1980) Aspects of carbon and nitrogen cycling in a shallow marine environment. J. exp. mar. Biol. Ecol. 47, 127–139.

    Article  CAS  Google Scholar 

  • Riedl RJ (1971) How much seawater passes through sandy beaches ? Int. Revue ges. Hydrobiol. 56 (6), 923–946.

    Article  Google Scholar 

  • Riedl RJ and McMahan EA (1974) High energy beaches. In: Odum HT, Copeland BJ and McMahan EA, eds. Coastal ecological systems of the United States, pp. 180–251, Washington, The Conservation Foundation.

    Google Scholar 

  • Riley JP and Chester R (1971) Introduction to marine chemistry. London, Academic Press, p 204.

    Google Scholar 

  • Roman MR (1980) Tidal resuspension in Buzzards Bay, Massachusetts. III: seasonal cycles of nitrogen and carbon:nitrogen ratios in the seston and zooplankton. Estuar. Coast. Mar. Sci. 11, 9–16.

    Article  CAS  Google Scholar 

  • Rutgers van der Loeff MM (1980) Time variations in interstitial nutrient concentrations at an exposed subtidal station in the Dutch Wadden Sea. Neth. J. Sea Res. 14 (2), 123–143.

    Article  Google Scholar 

  • Rutgers van der Loeff MM, van Es FB, Helder W and de Vries RTP (1981) Sediment water exchanges of nutrients and oxygen on tidal flats in the Ems-Dollard Estuary. Neth. J. Sea Res. 15 (1), 113–129.

    Article  Google Scholar 

  • Ryther JH and Dunstan WM (1971) Nitrogen, phosphorus and eutrophication in the coastal marine environment. Science 171, 1008–1013.

    Article  PubMed  CAS  Google Scholar 

  • Sorensen J (1978) Capacity for denitrification and reduction of nitrate to ammonia in a coastal marine sediment. Appl. Environ. Micro. 35 (2), 301–305.

    CAS  Google Scholar 

  • Sharp JH (1975) Gross analysis of organic matter in seawater: why, how, and from where. In: Church TM, ed. Marine chemistry in the coastal environment, pp 664–696, Washington, American Chemical Society.

    Google Scholar 

  • Steele JH and Baird IE (1968) Production ecology of a sandy beach. Limnol. Oceanogr. 13, 14–25.

    Article  Google Scholar 

  • Vaccaro RF (1962) The oxidation of ammonia in seawater. J. du Conseil 27 (1), 3–14.

    Article  CAS  Google Scholar 

  • Vaccaro RF, Hicks SE, Jannasch HW and Carey FG (1968) The occurrence and role of glucose in seawater. Limnol. Oceanogr. 13, 356–360.

    Google Scholar 

  • Vosjan JH and Olanczuk-Neyman KM (1977) Vertical distribution of mineralization processes in a tidal sediment. Neth. J. Sea Res. 11 (1), 14–23.

    Article  CAS  Google Scholar 

  • Waksman SA and Carey CL (1933) Rôle of bacteria in decomposition of plant and animal residues in the ocean. Proc. Soc. Exp. Biol. Med. 30, 526–527.

    Google Scholar 

  • Waksman SA, Carey CL and Reuszer HW (1933a) Marine bacteria and their rôle in the cycle of life in the sea. I. Decomposition of marine plant and animal residues by bacteria. Biol. Bull. 65 (1), 57–79.

    Article  Google Scholar 

  • Waksman SA, Hotchkiss M and Carey CL (1933b) Marine bacteria and their rôle in the cycle of life in the sea. II. Bacteria concerned in the cycle of nitrogen in the sea. Biol. Bull. 64, 137–167.

    Google Scholar 

  • Waksman SA, Reuszer HW, Carey CL, Hotchkiss M and Renn CE (1933c) Studies on the biology and chemistry of the Gulf of Maine. III. Bacteriological investigations of the sea water and marine bottoms. Biol. Bull. 64 (2), 183–205.

    Article  CAS  Google Scholar 

  • Webb KL (1981) Conceptual models and processes of nutrient cycling in estuaries. In: Neilson BJ and Cronin LE, eds. Webb KL, pp. 25–46, Humana Press.

    Google Scholar 

  • Wormald AP and Stirling HP (1979) A preliminary investigation of nutrient enrichment in experimental sand columns and its effect on tropical intertidal bacteria and meiofauna. Estuar. Coast. Mar. Sci. 8, 441–453.

    Article  CAS  Google Scholar 

  • Zeitzschel B (1979) Sediment water interactions in nutrient dynamics. Belle W Baruch Library in Marine Science, No.11, Marine Benthic Dynamics Meeting, Georgetown, USA, 1979. 195–218.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Eagle, G.A. (1983). The Chemistry of Sandy Beach Ecosystems — A Review. In: McLachlan, A., Erasmus, T. (eds) Sandy Beaches as Ecosystems. Developments in Hydrobiology, vol 19. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2938-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2938-3_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-8521-4

  • Online ISBN: 978-94-017-2938-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics