Skip to main content

Conservation and divergence of signalling pathways between roots and soil microbes — the Rhizobium-legume symbiosis compared to the development of lateral roots, mycorrhizal interactions and nematode-induced galls

  • Chapter
Roots: The Dynamic Interface between Plants and the Earth

Part of the book series: Developments in Plant and Soil Sciences ((DPSS,volume 101))

  • 1100 Accesses

Abstract

This review compares endophytic symbiotic and pathogenic root—microbe interactions and examines how the development of root structures elicited by various micro-organisms could have evolved by recruitment of existing plant developmental pathways. Plants are exposed to a multitude of soil micro-organisms which affect root development and performance. Their interactions can be of symbiotic and pathogenic nature, both of which can result in the formation of new root structures — how does the plant regulate the different outcomes of interactions with microbes? The idea that pathways activated in plant by micro-organisms could have been ‘hijacked’ from plant developmental pathways is not new, it was essentially proposed by P. S. Nutman in 1948, but at that time, the molecular evidence to support that hypothesis was missing. Genetic evidence for overlaps between different plant—microbe interactions have previously been examined. This review compares the physiological and molecular plant responses to symbiotic rhizobia with those to arbuscular mycorrhizal fungi, pathogenic nematodes and the development of lateral roots and summarises evidence from both molecular and cellular studies for substantial overlaps in the signalling pathways underlying root—micro-organism interactions. A more difficult question has been why plant responses to micro-organisms are so similar, even though the outcomes are very different. Possible hypotheses for divergence of signalling pathways and future approaches to test these ideas are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

AM:

arbuscular mycorrhizae

LCOs:

lipochitin oligosaccharides

References

  • Ardourel M, Demont N, Debellé F, Maillet F, deBilly F, Promé J-C, Dénarié J and Truchet G 1994 Rhizobium meliloti lipooligosaccharide nodulation factors: Different structural requirements for bacterial entry into target root hair cells and induction of plant symbiotic developmental responses. Plant Cell 6, 1357–1374.

    Google Scholar 

  • Ausubel F and Bisseling T 1999 Pathogenesis and symbiosis: two sides of the same coin that should be united by a common web-accessible database. Curr. Opinion Plant Biol. 2, 265–267.

    Article  Google Scholar 

  • Baier R, Schiene K, Kohring B, Flaschl E and Niehaus K 1999 Alfalfa and tobacco cells react differently to chitin oligosaccharides and Sinorhizobium meliloti nodulation factors. Planta 210, 157–164.

    Article  PubMed  CAS  Google Scholar 

  • Barker S J and Tagu D 2000 The roles of auxins and cytokinins in mycorrhizal symbioses. J. Plant Growth Regul. 19, 144–154.

    PubMed  CAS  Google Scholar 

  • Baron C and Zymbryski P C 1995 The plant response in pathogenesis, symbiosis and wounding: Variations on a common theme ? Ann. Rev. Gent. 29, 107–129.

    Article  CAS  Google Scholar 

  • Bauer P, Ratet P, Crespi M D, Schultze M and Kondorosi A 1996 Nod-factors and cytokinins induce similar cortical cell divisions, amyloplast deposition and MsENOD12A expression patterns in alfalfa roots. Plant J. 10, 91–105.

    Article  CAS  Google Scholar 

  • Bhuvaneswari T V, Bhagwat A A and Bauer W D 1981 Transient susceptibility of root cells in four common legumes to nodulation by rhizobia. Plant Physiol. 68, 1144–1149.

    Article  PubMed  CAS  Google Scholar 

  • Bird A F 1961 The ultrastructure and histochemistry of a nematode- induced giant cell. J Biophys. Biochem. Cytol. 11, 701–715.

    Article  PubMed  CAS  Google Scholar 

  • Bird D M and Koltai H 2000 Plant parasitic nematodes: Habitats, hormones and horizontally-acquired genes. J. Plant Growth Regul. 19, 183–194.

    PubMed  CAS  Google Scholar 

  • Blancaflor E B, Yhao L M and Harrison M J 2001 Microtubule organization in root cells of Medicago truncatula during development of an arbuscular mycorrhizal symbiosis with Glomus versiforme. Protoplasma 217, 154–165.

    Article  PubMed  CAS  Google Scholar 

  • Boller T 1995 Chemoperception of microbial signals in plant cells. Ann. Rev. Plant Physiol. Plant Mol. Biol. 46, 189–214.

    Article  CAS  Google Scholar 

  • Boot K J M, van Brussel A A N, Tak T, Spaink H P and Kijne J W 1999 Lipochitin oligosaccharides from Rhizobium leguminosarum by. viciae reduce auxin transport capacity in Vicia sativa subsp nigra roots. Molec. Plant—Microbe Interact. 12, 839–844.

    Google Scholar 

  • Bulawa C E 1992 CSD2, CSD3, and CSD4, genes required for chitin synthesis in Saccharomyces cerevisiae: The CSD2 gene product is related to chitin synthases and to developmentally regulated proteins in Rhizobium species and Xenopus laevis. Mol. Cell. Biol. 12, 1764–1776.

    PubMed  CAS  Google Scholar 

  • Caba J M Recalde L and Ligero F 1998 Nitrate-induced ethylene biosynthesis and the control of nodulation in alfalfa. Plant Cell Env. 21, 87–93.

    Article  Google Scholar 

  • Cardinale F, Jonak C, Ligterink W, Niehaus K, Boller T and Hirt H 2000 Differential activation of four specific MAPK pathways by distinct elicitors. J. Biol. Chem. 275, 36734–36740.

    Google Scholar 

  • Cook D, Dreyer D, Bonnet D, Howell M, Nony E and van den Bosch K 1995 Transient expression of a peroxidase gene in Medicago truncatula precedes infection by Rhizobium meliloti. Plant Cell 7, 43–55.

    PubMed  CAS  Google Scholar 

  • Cook D R 1999 Medicago truncatula — a model in the making. Curr. Opinion Plant Biol. 2, 301–304.

    Google Scholar 

  • Costacurta A and Vanderleyden J 1995 Synthesis of phytohormones by plant-associated bacteria. Crit. Rev. Microbiol. 21, 1–18.

    Article  PubMed  Google Scholar 

  • Crespi M D, Jurkevitch E, Poiret M, d’Aubenton-Carafa Y, Petrovics G, Kondorosi E and Kondorosi A 1994 enod40, a gene expressed during nodule organogenesis, codes for a non-translatable RNA involved in plant growth. EMBO J. 13, 5099–5112.

    Google Scholar 

  • Crespi M and Galvez S 2000 Molecular mechanisms in root nodule development. J. Plant Growth Regul. 19, 155–166.

    PubMed  CAS  Google Scholar 

  • Cullimore J V, Ranjeva R and Bono J-J 2001 Perception of lipochitooligosaccharidic Nod factors in legumes. Trends Plant Sci. 6, 24–30.

    Article  PubMed  CAS  Google Scholar 

  • Cyranoski D 2001 Japanese legume project may help to fix nitrogen problem. Nature 409, 272.

    Article  PubMed  CAS  Google Scholar 

  • Dântan-Gonzalez E, Rosenstein Y, Quinto C and Sanchez F 2001 Actin monoubiquitylation is induced in plants in response to pathogens and symbionts. Molec. Plant—Microbe Interact. 14, 1267–1273.

    Google Scholar 

  • Billy F, Grosjean C, May S, Bennet M and Cullimore J V 2001 Expression studies on AUXI-like genes in Medicago truncatula suggest that auxin is required at two steps in early nodule development. Molec. Plant—Microbe Interact. 14, 267–277.

    Google Scholar 

  • Jong A J, Heidstra R, Spaink H P, Hartog M H, Meijier E A, Hendriks T, Lo Schiavo F, Terzi M, Bisseling T, van Kammen A and de Vries S C 1993 Rhizobium lipo-oligosaccharides rescue a carrot somatic embryo variant. Plant Cell 5, 615–620.

    Google Scholar 

  • Dénarié J, Débellé F and Promé J C 1996 Rhizobium lipochitooligosaccharide nodulation factors: Signalling molecules mediating recognition and morphogenesis. Ann. Rev. Biochem. 65, 503–535.

    Google Scholar 

  • Doebley J and Lukens L 1998 Transcriptional regulators and the evolution of plant form. Plant Cell 10, 1075–1082.

    PubMed  CAS  Google Scholar 

  • Dong Y M, Canny M J, Cully M E, Roboredo M R, Cabadilla C F, Ortega E and Rodes R 1994 A nitrogen fixing endophyte of sugarcane stems — a new role for the apoplast. Plant Physiol. 105, 1139–1147.

    PubMed  CAS  Google Scholar 

  • Ducket C M, Oparka K J, Prior D A M, Dolan L and Roberts K 1994 Dye-coupling in the root epidermis of Arabidopsis is progressively reduced during development. Development 120, 3247–3255.

    Google Scholar 

  • Fâhraeus G 1957 The infection of clover root hairs by nodule bacteria studied by a simple glass slide technique. J. Gen. Microbiol. 16, 374–381.

    Article  PubMed  Google Scholar 

  • Fang Y and Hirsch A M 1998 Studying early nodulin gene ENOD40 expression and induction by nodulation factor and cytokinin in alfalfa. Plant Physiol. 116, 53–68.

    Article  PubMed  CAS  Google Scholar 

  • Felle H H, Kondorosi E, Kondorosi A and Schultze M 2000 How alfalfa root hairs discriminate between Nod factors and oligochitin elicitors. Plant Physiol. 124, 1373–1380.

    Article  PubMed  CAS  Google Scholar 

  • Fox J E, Starcevic M, Kow K Y, Burow M E and McLachlan J A 2001 Nitrogen fixation — endocrine disrupters and flavonoid signalling. Nature 413, 128–129.

    Article  PubMed  CAS  Google Scholar 

  • Geil R D, Peterson R L and Guinel F C 2001 Morphological alterations of pea (Pisum sativum cv. Sparkle) arbuscular mycorrhizas as a result of exogenous ethylene treatment. Mycorrhiza 11, 137–143.

    Google Scholar 

  • Gianinazzi-Pearson V 1996 Plant cell responses to arbuscular mycorrhizal fungi — getting to the roots of the symbiosis. Plant Cell. 8, 1871–1883.

    PubMed  Google Scholar 

  • Gianinazzi-Pearson V and Dénarié J 1997 Red carpet genetic programmes for root endosymbioses. Trends Plant Sci. 2, 371–372.

    Article  Google Scholar 

  • Goverse A, Overmars H, Engelberting J, Schots A, Bakker J and Helder J 2000 Both induction and morphogenesis of cyst nematode feeding cells are mediated by auxin. Molec. Plant—Microbe Interact. 13, 1121–1129.

    Google Scholar 

  • Györgyey J, Vaubert D, Jimenez-Zurdo J I, Charon C, Troussard L, Kondorosi A and Kondorosi E 1999 Analysis of Medicago truncatula nodule expressed sequence tags. Molec. Plant—Microbe Interact. 13, 62–71.

    Google Scholar 

  • Harrison M J 1999 Molecular and cellular aspects of the arbuscular mycorrhizal symbiosis. Ann. Rev. Plant Physiol. Plant Molec. Biol. 50, 361–389.

    Article  CAS  Google Scholar 

  • Harrison M J and Dixon R A 1993 Isoflavonoid accumulation and expression of defense gene transcripts during the establishment vesicular-arbuscular mycorrhizal associations in roots of Medicago truncatula. Molec. Plant—Microbe Interact. 6, 643–654.

    Article  CAS  Google Scholar 

  • Harrison M J and Dixon R A 1994 Spatial patterns of expression of flavonoid/isoflavonoid pathway genes during interactions between roots of Medicago truncatula and the mycorrhizal fungus Glomus versiforme. Plant J. 6, 9–20.

    Article  CAS  Google Scholar 

  • Hartley S E 1999 Are gall insects large rhizobia? Oikos 84, 333–342.

    Article  Google Scholar 

  • Hirsch A M, Bhuvaneswari T V, Torrey J G and Bisseling T 1989 Early nodulin genes are induced in alfalfa root outgrowths elicited by auxin transport inhibitors. Proc. Natl. Acad. Sci. USA 86, 1244–1248.

    Google Scholar 

  • Hirsch A M, Fang Y, Asad S and Kapulnik Y 1997 The role of phytohormones in plant—microbe symbioses. Plant Soil 194, 171–184.

    Article  CAS  Google Scholar 

  • Hirsch A M and Kapulnik Y 1998 Signal transduction pathways in mycorrhizal associations: Comparisons with the Rhizobium-legume symbiosis. Fungal Gent. Biol. 23, 205–212.

    CAS  Google Scholar 

  • Hirsch A M and LaRue T A 1997 Is the legume nodule a modified root or stem or an organ sui generis? Crit. Rev. Plant Sci. 16, 361–392.

    Google Scholar 

  • Hirsch A M and McFall-Ngai M J 2000 Fundamental concepts in symbiotic interactions: Light and dark, day and night, squid and legume. J. Plant Growth Regul. 19, 113–130.

    PubMed  CAS  Google Scholar 

  • Hungria M and Stacey G 1997 Molecular signals exchanged between host plants and rhizobia — basic aspects and potential applications in agriculture. Soil Biol. Biochem. 29, 819–830.

    CAS  Google Scholar 

  • Hutangura P, Mathesius U, Rolfe B G and Jones M E K 1999 Auxin induction is a trigger for root gall formation caused by root-knot nematodes in white clover and is associated with the activation of the flavonoid pathway. Aust. J. Plant Physiol. 26, 221–231.

    Google Scholar 

  • Jacobs M and Rubery P H 1988 Naturally occurring auxin transport regulators. Science 241: 346–349.

    Article  PubMed  CAS  Google Scholar 

  • Journet E P, El-Gachtouli N, Vernout V, de Billy F, Pichon M, Dedieu A, Amould C, Morandi D, Barker D G and GianninaziPearson V 2001 Medicago truncatula ENOD11: A novel RPRPencoding early nodulin gene expressed during mycorrhization in arbuscule-containing cells. Molec. Plant—Microbe Interact. 14, 737–748.

    Google Scholar 

  • Keen N T and Roberts P A 1998 Plant parasitic nematodes: Digesting a page from the microbe book. Proc. Natl. Acad. Sci. USA 95, 4789–4790.

    Article  PubMed  CAS  Google Scholar 

  • Kennedy M J, Niblack T L and Krishnan H B 1999 Infection by Heterodera glycines elevates isoflavonoid production and influences soybean nodulation. J. Nematol. 31, 341–347.

    PubMed  CAS  Google Scholar 

  • Kieber J J and Ecker J R 1993 Ethylene gas: It’s not just for ripening any more! Trends Genet. 9, 356–362.

    Article  PubMed  CAS  Google Scholar 

  • Kolattukudy P E, Rogers L M, LI D, Hwang C-S and Flaishman M A 1995 Surface signaling in pathogenesis. Proc. Natl. Acad. Sci. USA 92, 4080–4087.

    Google Scholar 

  • Koltai H, Dhandaydham H, Opperman C, Thomas J and Bird D 2001 Overlapping plant signal transduction pathways induced by a parasitic nematode and a rhizobial endosymbiont. Molec. Plant—Microbe Interact. 14, 1168–1177.

    Google Scholar 

  • Lawson C G R, Djordjevic M A, Weinman J J and Rolfe B G 1994 Rhizobium inoculation and physical wounding result in the rapid induction of the same chalcone synthase copy in Trifolium subterraneum. Molec. Plant—Microbe Interact. 7, 498–507.

    Google Scholar 

  • Lievens S, Goormachtig S and Holsters M 2001 A critical evaluation of differential display as a tool to identify genes involved in legume nodulation: Looking back and looking forward. Nucl. Acids Res. 29, 3459–3468.

    Google Scholar 

  • Marsh J F and Schultze M 2001 Analysis of arbuscular mycorrhizas using symbiosis-defective plant mutants. New Phytol. 150,525— 532.

    Google Scholar 

  • Martirani L, Stiller J, Mirabella R, Alfano F, Lamberti A, Radutoiu S E, Iaccarino M, Gresshoff P M and Chiurazzi M 1999 T-DNA tagging of nodulation and root-related genes in Lotus japonicus: Expression patterns and potential for promoter trapping and insertional mutagenesis. Molec. Plant—Microbe Interact. 12, 275–284.

    Google Scholar 

  • Mathesius U 2001 Flavonoids induced in cells undergoing nodule organogenesis in white clover are regulators of auxin breakdown by peroxidase. J. Exp. Bot. 52, 419–426.

    Article  PubMed  CAS  Google Scholar 

  • Mathesius U, Bayliss C, Weinman J J, Schlaman H R M, Spaink H P, Rolfe B G, McCully M E and Djordjevic M A 1998a Flavonoids synthesised in cortical cells during nodule initiation are early developmental markers in white clover. Molec. Plant—Microbe Interact. 11, 1223–1232.

    Google Scholar 

  • Mathesius U, Charon C, Rolfe B G, Kondorosi A and Crespi M 2000a Temporal and spatial order of events during the induction of cortical cell divisions in white clover by Rhizobium leguminosarum by. trifolii inoculation or localized cytokinin addition. Molec. Plant—Microbe Interact. 13, 617–628.

    Google Scholar 

  • Mathesius U, Keijzers G, Natera S H A, Weinman J J, Djordjevic M A and Rolfe B G 2001 Establishment of a root proteome reference map for the model legume Medicago truncatula using the expressed sequence tag database for peptide mass fingerprinting. Proteomics 1, 1424–1440.

    Article  PubMed  CAS  Google Scholar 

  • Mathesius U, Schlaman H R M, Spaink H P, Sautter C, Rolfe B G and Djordjevic M A 1998b Auxin transport inhibition precedes nodule formation in white clover roots and is regulated by flavonoids and derivatives of chitin oligosaccharides. Plant J. 14, 23–34.

    Article  PubMed  CAS  Google Scholar 

  • Mathesius U, Weinman J J, Rolfe B G and Djordjevic M A 2000b Rhizobia can induce nodules in white clover by `hijacking’ mature cortical cells activated during lateral root development. Molec. Plant—Microbe Interact. 13, 170–182.

    Google Scholar 

  • McCully M E 1999 Roots in soil: Unearthing the complexities of roots and their rhizospheres. Ann. Rev. Plant Physiol. Plant Molec. Biol. 50, 695–718.

    Article  CAS  Google Scholar 

  • Mellor R B and Collinge D B 1995 A simple model based on known plant defence reactions is sufficient to explain most aspects of nodulation. J. Exp. Bot. 46, 1–18.

    Article  CAS  Google Scholar 

  • Miklashevichs E, Röhrig H, Schell J and Schmidt J 2001 Perception and signal transduction of rhizobial Nod factors. Crit. Rev. Plant Sci. 20, 373–394.

    Google Scholar 

  • Minami E, Kouchi H, Cohn J R, Ogawa T and Stacey G 1996 Expression of the early nodulin, ENOD40, in soybean roots in response to various lipo-chitin signal molecules. Plant J. 10, 23–32.

    Article  PubMed  CAS  Google Scholar 

  • Morris A C and Djordjevic M A 2001 Proteome analysis of cultivar-specific interactions between Rhizobium leguminosarum biovar trifolii and subterranean clover cultivar Woogenellup. Electrophoresis. 22, 586–598.

    Article  PubMed  CAS  Google Scholar 

  • Muller J, Staehelin C, Xie Y P, Neuhaus-Url G and Boller T 2000 Nod factors and chitooligomers elicit an increase in cytosolic calcium in aequorin-expressing soybean cells. Plant Physiol. 124, 733–739.

    Article  PubMed  CAS  Google Scholar 

  • Natera S H A, Guerreiro N and Djordjevic M A 2000 Proteome analysis of differentially displayed proteins as a tool for the investigation of symbiosis. Molec. Plant—Microbe Interact. 13, 995–1009.

    Google Scholar 

  • Nutman P S 1948 Physiological studies on nodule formation I. The relation between nodulation and lateral root formation in red clover. Ann. Bot. 12, 81–96.

    Google Scholar 

  • Panter S, Thomson R, de Bruxelles G, Laver D, Trevaskis B and Udvardi M 2000 Identification with proteomics of novel proteins associated with the peribacteroid membrane of soybean root nodules. Molec. Plant—Microbe Interact. 13, 325–333.

    Google Scholar 

  • Parniske M 2000 Intracellular accommodation of microbes by plants: A common developmental program for symbiosis and disease ? Curr. Opinion Plant Biol. 3, 320–328.

    Article  CAS  Google Scholar 

  • Parniske M, Schmidt P E, Kosch K and Müller P 1994 Plant defence responses of host plants with determinate nodules induced by EPS-defective exoB mutants of Bradyrhizobium japonicum. Molec. Plant—Microbe Interact. 7, 631–638.

    Google Scholar 

  • Peck S C, Nuhse T S, Hess D, Iglesias A, Mins F and Boller T 2001 Directed proteomics identifies a plant-specific protein rapidly phosphorylated in response to bacterial and fungal elicitors. Plant Cell 13, 1467–1475.

    PubMed  CAS  Google Scholar 

  • Penmetsa R V and Cook D R 1997 A legume ethylene-insensitive mutant hyperinfected by its Rhizobium symbiont. Science 275, 527–530.

    Article  PubMed  CAS  Google Scholar 

  • Pinochet J, Calvet C, Camprubi A and Fernandez C 1996 Interactions between migratory endoparasitic nematodes and arbuscular mycorrhizal fungi in perennial crops — a review. Plant Soil 185, 183–190.

    Article  CAS  Google Scholar 

  • Pittock C, Weinman J J and Rolfe B G 1997 The activity of a tobacco basic chitinase promoter in white clover provides insights into plant development and symbiosis. Aust. J. Plant Physiol. 24, 555–561.

    Google Scholar 

  • Rahimi S, Whright D J and Perry R N 1998 Identification and localisation of chitinases induced in the roots of potatoe plants infected with the potatoe cyst nematode Globodera pallida. Fund. Appl. Nematol. 21, 705–713.

    Google Scholar 

  • Rahme L G, Ausubel F M, Cao H, Drenkard E, Goumnerov B C, Lau G W, Mahajan-Miklos S, Plotnikova J, Tan M-W, Tsongalis J, Walendziewicz C L and Tompkins R G 2000 Plants and animals share functionally common bacterial virulence factors. Proc. Natl. Acad. Sci. USA 97, 8815–8821.

    Google Scholar 

  • Reddy P M, Aggarwal R K, Ramos M C, Ladha J K, Brar D S and Kouchi H 1999a Widespread occurrence of the homologues of the early nodulin (ENOD) genes in Oryza species and related grasses. Biochem. Biophys. Res. Comm. 258, 148–154.

    Google Scholar 

  • Reddy P M, Ladha J K, Ramos M C, Maillet F, Hermnandez R J, Torrizo B, Oliva N P, Datta S K and Datta K 1999b Rhizobial lipochitooligosaccharide nodulation factors activate expression of the legume early nodulin gene ENOD12 in rice. Plant J. 14, 693–702.

    Article  Google Scholar 

  • Redmond J R, Batley M, Djordjevic M A, Innes R W, Keumpel P L and Rolfe B G 1986 Flavones induce expression of nod genes in Rhizobium. Nature 323, 632–635.

    Article  CAS  Google Scholar 

  • Reitz M, Rudolph K, Schroder I, Hoffmann-Hergarten S, Hallmann J and Sikora R A 2000 Lipopolysaccharides of Rhizobium etli strain G12 act in potato roots as an inducing agent of systemic resistance to infection by the cyst nematode Globodera pallida. App. Envir. Microbiol. 66, 3515–3518.

    Google Scholar 

  • Relic B, Perret X, Estrada-Garcia M T, Kopcinska J, Golinowski W, Krishnan H, Pueppke S G and Broughton W J 1994 Nod factors of Rhizobium are the key to the legume door. Molec. Microbiol. 13, 171–178.

    Google Scholar 

  • Ridge R W, Bender G L and Rolfe B G 1992 Nodule-like structures induced on roots of wheat seedlings by addition of the synthetic auxin 2,4-dichlorophenoxyacetic acid and the effects of microorganisms. Aust. J. Plant Physiol. 19, 481–492.

    Google Scholar 

  • Rolfe B G and Gresshoff P M 1988 Genetic analysis of legume nodule initiation. Ann. Rev. Plant Physiol. Plant Mol. Biol. 39, 297–319.

    Article  Google Scholar 

  • Rupp H M, Frank M, Werner T, Strnad M and Schmülling T 1999 Increased steady state mRNA levels of the STM and KNAT1 homeobox genes in cytokinin overproducing Arabidopsis thaliana indicate a role for cytokinins in the shoot apical meristem. Plant J. 18, 557–563.

    Article  PubMed  CAS  Google Scholar 

  • Salzer P, Bonanomi A, Beyer K, Vogeli-Lange R, Aeschbacher R A, Lange J, Wiemken A, Kim D, Cook D R and Boller T 2000 Differential expression of eight chitinase genes in Medicago truncatula roots during mycorrhiza formation, nodulation and pathogen infection. Molec. Plant-Microbe Interact. 13, 763–777.

    Google Scholar 

  • Schauser L, Roussis A, Stiller J and Stougaard J 1999 A plant regulator controlling development of symbiotic root nodules. Nature 402, 191–195.

    Article  PubMed  CAS  Google Scholar 

  • Schlaman H R M, Gisel A A, Quaedvlieg N E M, Bloemberg G V, Lugtenberg B J J, Kijne J W, Potrykus I, Spaink H P and Sautter C 1997 Chitin oligosaccharides can induce cortical cell division in roots of Vicia sativa when delivered by ballistic microtargeting. Development 124, 4887–4895.

    PubMed  CAS  Google Scholar 

  • Schmidt J S, Harper J E. Hoffman T K and Bent A F 1999 Regulation of soybean nodulation independent of ethylene signalling. Plant Physiol. 119, 951–959.

    CAS  Google Scholar 

  • Schmidt J, Röhrig H, John M, Wienecke U, Stacey G, Koncz C and Schell J 1993 Alteration of plant growth and development by Rhizobium nodA and nodB genes involved in the synthesis of oligosaccharide signal molecules. Plant J. 4, 651–658.

    Article  CAS  Google Scholar 

  • Schmidt P E, Parniske M and Werner D 1992. Production of the phytoalexin glyceollin I by soybean roots in response to symbiotic and pathogenic infection. Bot. Acta 105, 18–25.

    Google Scholar 

  • Schultze M and Kondorosi A 1996 The role of lipochitooligosaccharides in root nodule organogenesis and plant cell growth. Curr. Opinion Genet. Dev. 6, 631–638.

    Article  CAS  Google Scholar 

  • Semino C E and Allende M L 2000 Chitin oligosaccharides as candidate patterning agents in zebrafish embryogenesis. Int. J. Devel. Biol. 44, 183–193.

    CAS  Google Scholar 

  • Shrihari P C, Sakamoto K, Inubushi K and Akao S 2000 Interaction between supernodulating or non-nodulating mutants of soybean and two arbuscular mycorrhizal fungi. Mycorrhiza 10, 101–106.

    Article  Google Scholar 

  • Siddiqui Z A and Mahmood I 1995 Role of plant symbionts in nematode management–a review. Bioresource Technol. 54, 217–226.

    Article  CAS  Google Scholar 

  • Smit G, de Koster C C, Schripsema J, Spaink H P, van Brussel A A and Kijne J W1995 Uridine, a cell division factor in pea roots. Plant Mol. Biol. 29, 869–873.

    Google Scholar 

  • Smith F A and Smith S E 1996 Mutualism and parasitism: diversity in function and structure in the `arbuscular’ (VA) mycorrhizal symbiosis. Adv. Bot. Res. 22, 1–43.

    Article  Google Scholar 

  • Solaiman M Z, Senoo K, Kawaguchi M, Imaizumi-Anraku H, Akao S, Tanaka A and Obata H 2000 Characterization of mycorrhizas formed by Glomus sp. on roots of hypernodulating mutants of Lotus japonicus. J. Plant Res.. 113, 443–448.

    Article  Google Scholar 

  • Spaink H P 1996 Regulation of plant morphogenesis by lipo-chitin oligosaccharides. Crit. Rev. Plant Sci. 15, 559–582.

    CAS  Google Scholar 

  • Soltis D E, Soltis P S, Morgan D R, Swensen S M, Mullin B C, Dowd J M and Martin P G 1995 Chloroplast gene sequence data suggest a single origin of the predisposition for symbiotic nitrogen-fixation in angiosperms. Proc. Natl. Acad. Sci USA 92, 2647–2651.

    Google Scholar 

  • Spaink H P, Wijfjes A H M, van Vliet T B, Kijne J W and Lugten-berg, B J J 1993 Rhizobial lipo-oligosaccharide signals and their role in plant morphogenesis; are analogous lipophilic chitin derivatives produced by the plant? Aust. J. Plant Physiol. 20, 381–392.

    CAS  Google Scholar 

  • Stacey G and Shibuya N 1997 Chitin recognition in rice and legumes. Plant Soil 194, 161–169.

    Article  CAS  Google Scholar 

  • Staehelin C, Charon C, Boller T, Crespi M and Kondorosi A 2001 Medicago truncatula plants overexpressing the early nodulin gene enod40 exhibit accelerated mycorrhizal colonization and enhanced formation of arbuscules. Proc. Natl. Acad. Sci. USA 98, 15366–15371.

    Google Scholar 

  • Staehelin C, Granado J, Muller J, Wiemken A, Mellor R B, Felix G, Regenaas M, Broughton W J and Boller T 1994. Perception of Rhizobium nodulation factors by tomato cells and inactivation by root chitinases. Proc. Natl. Acad. Sci. USA 91, 2196–2200.

    Google Scholar 

  • Stafford H A 1997 Roles of flavonoids in symbiotic and defense functions in legume roots. Bot. Rev. 63, 27–39.

    Article  Google Scholar 

  • Stougaard J 2001 Genetics and genomics of root symbioses. Curr. Opinion Plant Biol. 4, 328–335.

    Article  CAS  Google Scholar 

  • Streeter J G 1988 Inhibition of legume nodule formation and N2 fixation by nitrate. Crit. Rev. Plant Sci. 7, 1–23.

    Article  CAS  Google Scholar 

  • Tahiri-Alaoui A and Antoniw J F 1996 Cloning of genes associated with the colonization of tomato roots by the arbuscular mycorrhizal fungus Glomus mosseae. Agronomie 16, 699–707.

    Article  Google Scholar 

  • Tisserant B, Gianninazi S and Gianninazi-Pearson V 1996 Relationships between lateral root order, arbuscular mycorrhiza development, and the physiological state of the symbiotic fungus in Platanus acerifolia. Can. J. Bot. 74, 1947–1955.

    Google Scholar 

  • Truchet G, Barker DG, Camut S, deBilly F, Vasse J and Huguet T 1989 Alfalfa nodulation in the absence of Rhizobium. Mol. Gen. Genet. 219, 65–68.

    Google Scholar 

  • Tschermak-Woess E and Dolezal R 1953 Durch Seitenwurzelbildung induzierte und spontane Mitosen in den Dauergeweben der Wurzel. Ost. Bot. Zeitschrift 100, 358–402.

    Article  Google Scholar 

  • Tsiantis M, Brown M I N, Skibinski G and Langdale J A 1999 Disruption of auxin transport is associated with aberrant leaf development in maize. Plant Physiol. 121, 1163–1168.

    Article  PubMed  CAS  Google Scholar 

  • Vance C P and Lamb J F S 2001 Application of biochemical studies to improving nitrogen fixation. Aust. J. Exp. Agricult. 41, 403–416.

    Article  CAS  Google Scholar 

  • Van Rijn P, Fang Y, Galili S, Shaul O, Atzmon N, Winiger S, Eshead Y, Kapulnik Y, Lum M, Li Y, To V, Jujishige and Hirsch A M 1997 Expression of early nodulin genes in alfalfa mycorrhizae indicates that signal transduction pathways used in forming arbuscular mycorrhizae and Rhizobium-induced nodules may be conserved. Proc. Natl. Acad. Sci USA 94, 5467–5472.

    Google Scholar 

  • Varki A 1996 Does DG42 synthezise hyaluronan or chitin–a controversy about oligosaccharides in vertebrate development. Proc. Natl. Acad. Sci. USA 93, 4523–4525.

    Article  PubMed  CAS  Google Scholar 

  • Vasse J, de Billy F and Truchet G1993 Abortion of infection during the Rhizobium meliloti-alfalfa symbiotic interaction is accompanied by a hypersensitive reaction. Plant J. 4, 555–566.

    Google Scholar 

  • Walker S A, Viprey V and Downie J A 2000 Dissection of nodulation signaling using pea mutants defective for calcium spiking induced by Nod factors and chitin oligomers. Proc. Natl. Acad. Sci USA 97, 13413–13418.

    Google Scholar 

  • Watt M and Evans J R 1999 Proteoid roots. Physiology and development. Plant Physiol. 121, 317–323.

    Article  PubMed  CAS  Google Scholar 

  • Wopereis J, Pajuelo E, Dazzo F B, Jiang Q Y, Gresshoff P M, de Brujin F J, Stougaard J and Szczyglowski K 2000 Short root mutant of Lotus japonicus with a dramatically altered symbiotic phenotype. Plant J. 23, 97–114.

    Article  PubMed  CAS  Google Scholar 

  • Wu C, Dickstein R, Cary A J and Norris J H 1996 The auxin transport inhbitor N-(1-naphthyl)phthalamic acid elicits pseudonodules on non-nodulating mutants of white sweetclover. Plant Physiol. 110, 501–510.

    PubMed  CAS  Google Scholar 

  • Xie Z-P, Staehelin C, Vierheilig H, Wiemken A, Jabbouri S, Broughton W J, Vogeli-Lange Y R and Boller T 1995 Rhizobial nodulation factors stimulate mycorrhizal colonisation of nodulating and non-nodulating syobeans. Plant Physiol. 108, 1519–1525.

    PubMed  CAS  Google Scholar 

  • Xie Z-P, Muller J, Wiemken A, Broughton, W J and Boller T 1997 Nod factors and tri-iodobenzoic acid stimulate mycorrhizal colonisation and affect carbohydrate partitioning in mycorrhizal roots of Lablab purpureus. New Phytol. 139, 361–366.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrike Mathesius .

Editor information

Jun Abe

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mathesius, U. (2003). Conservation and divergence of signalling pathways between roots and soil microbes — the Rhizobium-legume symbiosis compared to the development of lateral roots, mycorrhizal interactions and nematode-induced galls. In: Abe, J. (eds) Roots: The Dynamic Interface between Plants and the Earth. Developments in Plant and Soil Sciences, vol 101. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2923-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2923-9_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6407-3

  • Online ISBN: 978-94-017-2923-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics