Skip to main content

Abstract

A detailed study has been made of the hazards to employees and to local population in the vicinity of six selected installations in the Rijnmond area.

This was undertaken with the primary objective of evaluating risk assessment techniques in a real application, and in the course of the work a valuable debate has taken place between the various interested parties on the subject of calculation methods.

The methods selected for use were applied in a comprehensive and detailed way to a large number of failure cases associated with each study object.

Systematic methods were used for identifying failure cases, and a very large number of possible outcomes of each case was considered, taking into account weather frequencies, population and ignition source distributions, as well as the location of employees.

The overall conclusions about calculation methods are given in Section 1.1. below, while in Section 1.2. some areas for future development are identified and briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References to Appendix II

  1. Cude, A.L. (1975) “The Generation Spread and Decay of Flammable Vapour Clouds”. I. Chem. E. Course, A.L. (1975)“The Generation Spread and Decay of Flammable Vapour Clouds”. I. Chem. E. Course “Process Safety - Theory and Practice”, Teesside Polytechnic, Middlesborough, 7–10 July, 1975.

    Google Scholar 

  2. Fauske, H.K. (1965) “The Discharge of Saturated Water Through Pipes”. C.E.P. Symp. Series 61 p. 210.

    Google Scholar 

  3. Lapple, C.E. (1943) “Isothermal And Adiabatic Flow of Compressible Fluids”. Trans Am. Inst. Chem. Engrs. 39, 385.

    Google Scholar 

  4. Moody, L.F. (1944) Trans Am. Inst. Soc. Mech. Engrs. 66, 671.

    Google Scholar 

  5. Perry, J.H. (1963) Perry, J.H. (Ed) “The Chemical Engineers Handbook”, 4th Edition. McGraw-Hill.

    Google Scholar 

  6. AGA (1974). American Gas Association; “LNG Safety Study, Interim Report on Phase II Work, Project IS-3–1, July 1974.

    Google Scholar 

  7. Boyle, G.L. and Kneebone, A. (1972). “Laboratory Investigation into the Characteristics of LNG Spills on Water, Evaporation, Spreading and Vapour Dispersion”. Shell Research Ltd.

    Google Scholar 

  8. Burgess, D.S., Biordi, J. and Murphy, J.N. (1970). “Hazards of Spillage of LNG in Marine Transportation”, U.S. Bureau of Mines Rpt. No. NTIS AD-705078, 1970.

    Google Scholar 

  9. Fay, J.A. (1973). “Unusual Fire Hazard of LNG Tanker Spills”, Combustion Science and Technology, 7, 47–49, 1973.

    Google Scholar 

  10. Humbert-Basset, R. et Montet, A. (1972). “Dispersion dans L’atmosphere d’un Nuage Gazeux Formé par Epandage de GNL sur le Sol”. 3rd Int. Conf. on LNG, Washington, 1972.

    Google Scholar 

  11. Japan Gas Association, The. (1976). “A Study of Dispersion of Evaporated Gas and Ignition of LNG Pool Resulted from Continuous Spillage of LNG” Conducted during 1975, JGA, April 1976.

    Google Scholar 

  12. May, W.G. and P. Perumal. (1974). “The Spreading and Evaporation of LNG on Water”, Contributed Paper, Process Ind. Div. Annual ASME Meeting, November 1974.

    Google Scholar 

  13. McQueen, W. et. al. (1972). “Spills of LNG on Water”, Esso Research and Engineering Co. Rpt. No. EE61E-72, 1972.

    Google Scholar 

  14. Opschoor, G. (1977).“Investigations into the Spreading and Evaporation of LNG Spilled on Water”. Cryogenics, November 1977 p. 629–633.

    Google Scholar 

  15. Opschoor, G. (1978). “Concept Rapport Onderzoek naar de Verdamping van Vloeistoffen op Land”. TNO Report 78–0834, August 1978.

    Google Scholar 

  16. Otterman, B. (1975). “Analysis of Large LNG Spills on Water. Part 1. Liquid Spread and Evaporation Cryogenics”, p. 455, August 1975.

    Google Scholar 

  17. Pasquill, F. (1943). “Evaporation from a Plane, Free-Liquid Surface into a Turbulent Air Stream”, Proc. Roy. Soc (London), A182, 75, 1943.

    Google Scholar 

  18. Raj, P.P.K. and Kalelkar, A.S. (1974). “Assessment Models in Support of the Hazard Assessment Handbook”, U.S. Coast Guard Report No. CG-D-65–74, January 1974.

    Google Scholar 

  19. Shaw, P. and Briscoe, F. (1978) “Evaporation from Spills of Hazardous Liquids on Land and Water”. UKAEA Rpt. SRD R100, 1978.

    Google Scholar 

  20. Sutton, O.G. (1953). “Micrometeorology”. McGraw-Hill, London, 1953.

    Google Scholar 

  21. Battelle Columbus Laboratories (1974). Report to American Gas Association. “LNG Safety Program. Phase II”. AGA project IS-3–1.

    Google Scholar 

  22. Cox, R.A. and Roe, D.E. (1977). A Model of the Dispersion of Dense Vapour Clouds, 2nd Intl. Loss Prevention Symposium, Heidelberg, 1977.

    Google Scholar 

  23. Ellison, T.H. and Turner, J.S. (1960). Mixing of Dense Fluid in a Turbulent Pipe Flow. JFM 8, 514–544.

    Article  MathSciNet  MATH  Google Scholar 

  24. England, W.G., Teuscher, L.H., Hauser, L.E. and Freeman, B. (1978). Atmospheric Dispersion of LNG Vapour Clouds, Heat Transfer and Fluid Mechanics Institute, Washington, June 26–28, 1978.

    Google Scholar 

  25. Germeles, A.E. and Drake, E.M. (1975). Proc. 4th Symposium on Transport of Hazardous Cargoes by Sea and Inland Waterways,Jacksonville, Florida.

    Google Scholar 

  26. Hosker, E.P. Jr. Estimates of Dry Deposition and Plume Depletion over Forests and Grassland. IAEA-SM-181/19.

    Google Scholar 

  27. McMullen, R. (1975). JAPCA. 25 No. 10. October 1975.

    Google Scholar 

  28. Monin, A.S. (1962). J. Geophys. Res. 67, 3103.

    Google Scholar 

  29. Ooms, G. et. al. (1974). The Plume Path of Vent Gases Heavier than Air. 1st International Loss Prevention Symposium, The Hague/Delft.

    Google Scholar 

  30. Pasquill, F. (1961). The Estimation of the Dispersion of Windborne Material. Met. Meg. 90, 33.

    Google Scholar 

  31. Sutton, O.G. (1953). Micrometeorology, McGraw-Hill.

    Google Scholar 

  32. Taylor, R.J. et. al. (1970). Quart. J. Roy. Met. Soc. 96, 750.

    Google Scholar 

  33. Thompson (1969). “Turbulent Interfases Generated by an Oscillating Grid in a Stable Stratified Fluid”. Ph. D. Thesis, University of Cambridge.

    Google Scholar 

  34. Turner, J.S. (1973). Buoyancy Effects in Fluids. Cambridge University Press.

    Google Scholar 

  35. Van Ulden, A.P. (1974). 1st International Loss Prevention Symposium. The Hague/Delft.

    Google Scholar 

  36. Turner, D.B. (1969). Workbook of Atmospheric Dispersion Estimates. U.S. National Air Pollution Control Administration.

    Google Scholar 

  37. Brasie, W.C., and Simpson, D.W. (1968) “Guidelines for Estimating Explosion Damage from Chemical Explosions” Symp. Loss Prevention in the Process Industries, A.I.Ch.E., 18–21 February 1968.

    Google Scholar 

  38. Bruning F. (1979) “A pragmatic approach for estimating the damage caused by an unconfined vapour cloud explosion” Private communication, January 1979.

    Google Scholar 

  39. Kletz, T.A. “Unconfined Vapour Cloud Explosions” Loss Prevention, Vol II p. 50.

    Google Scholar 

  40. Marschall, V.C. (1979) “The Hazards, the Probable Outcome and Frequency” Symp. Bulk Storage and Handling of Flammable Gases and Liquids. Oyez Communications, London, 8–9 February 1979.

    Google Scholar 

  41. Maurer, B., Hes, K., Giesbrecht, H. and Leuckel, W. (1977) “Modelling of Vapour Cloud Dispersion and Deflagration after Bursting to Tanks filled with Liquefied Gas” 2nd Int. Loss Prevention Symp., Heidelberg 1977.

    Google Scholar 

  42. Munday, G. (1979) “Chances of Ignition leading to Unconfined Explosions in Flammable Gas and Vapour Clouds” Insurance Technical Bureau, London, S.W. 1. (13 August 1979).

    Google Scholar 

  43. T.N.O. (1977/78) “Methods for the estimation of the consequences of the release of dangerous material (liquids and gases)” Bureau of Explosives Safety T.N.O., Rijswijk 1st edition 1977, as amended 22 September 1978.

    Google Scholar 

  44. Wiekema, B.J. (1978) “Unconfined Vapour Cloud Explosion Model” Journal of Hazardous Materials, Vol. 3, pp. 221–232

    Article  Google Scholar 

  45. American Gas Association (AGA, 1974). “LNG Safety Program - Report on Phase II Work”.

    Google Scholar 

  46. American Petroleum Institute (API, 1969 ). “Guide for Pressure Relief and Depressuring Systems”. API. R.P. 521.

    Google Scholar 

  47. Brötz, W. et. al. (1977). “Statistical Investigations of Pool Flames”. Loss Prevention and Safety Promotion in the Process Industries. 2nd (Inter.) Symposium, Heidelberg, September 1977.

    Google Scholar 

  48. Burgess, D.S., Strasser, A. and Gunner, J. (1961). “Diffusive Burning of Liquid Fuels in Open Trays”. Fire Research Abstracts and Review 3 (3) 177–192, 1961.

    Google Scholar 

  49. Fay, J.A. and Lewis, D.H. (1977). “Unsteady Burning of Unconfined Fuel Vapour Clouds”. 16th Symposium on Combustion.

    Google Scholar 

  50. Gayle, J.B. (1965). “Size and Duration of Fireballs from Propellant Explosions”. NASA (TM-X-53314) August 1965.

    Google Scholar 

  51. Glasstone, S. (1962). “Effects of Nuclear Weapons”. US Atomic Energy Commission, April 1962.

    Google Scholar 

  52. Hall, A.R. “Pool Burning - a Review”. Rocket Propulsion Establishment Tech. Report No. 72/11.

    Google Scholar 

  53. High, R.W. (1968). “The Saturn Fireball”. Annuals of New York Academy of Science, 152 I, pp 441–451.

    Google Scholar 

  54. Hasegawa, K. and Sato, K. (1977). “Study on the Fireball following Steam Explosion of n-Pentane”.

    Google Scholar 

  55. Japanese M.I.T.I. (Ministry of International Trade and Industry (1976/76). “Report on the Experimental Results of Explosions and Fires of Liquid Ethylene Facilities”.

    Google Scholar 

  56. Jarrett, D.E. (1966). “Derivation of the British Explosives Safety Distance”. Ministry of Defence, UK. Annuals New York Academy of Sciences.

    Google Scholar 

  57. Mansfield, J.A. (1969). “Heat Transfer Hazards of Liquid Rocket Propellant Explosions”. URS Research Co., Burlingame, California.

    Google Scholar 

  58. McGuire, J.H. (1955). “Heat Transfer by Radiation”. Fire Research Special Report No. 2.

    Google Scholar 

  59. Rein, R.G., Sliepcewich, C.M. and Welker, J.R. (1970). “Radiation View Factors for Tilted Cylinders”. J. Fire and Flammability, Vol. 1, pp. 140–153.

    Google Scholar 

  60. Robertson, R.B. (1976). “Spacing in Chemical Plant Design Against Loss by Fire” Process Industry Hazards. Inst. of Chem. Eng. Symp. No. 47.

    Google Scholar 

  61. Thomas, P.H. (1963). “The Size of Flames from Natural Fires”. 9th Symp. on Combustion, pp. 844–850. Acad. Press Inc., New York.

    Google Scholar 

  62. Thomas, P.H. (1965). “Fire Spread in Wooden Cribs, Part III; The Effect of the wind”. F.R. Note No. 600, Fire Research Station, Boreham Wood, UK.

    Google Scholar 

  63. Takhírov, M.T. in V.A. Ryazanov, Ed. “Limits of Allowable Concentrations of Atmospheric Pollutants”, Book 4, 1960. Translated by B.S. Levine, Public Health Service, Washington DC, USA, January 1961. (Available from NTIS, Springfield, Va., as publication No. TT 60–21475 ).

    Google Scholar 

  64. Takhirov, M.T., in B.S.Levine, Ed., “USSR Literature on Air Pollution and Related Occupational Diseases, A Survey”, Vol.3

    Google Scholar 

  65. Washington DC, 1960. (NTIS Publication TT 60–21475). “Chlorine and Hydrogen Chloride”, NRC/NAS, Medical and Biological Effects of Environmental Pollutants, 1976.

    Google Scholar 

  66. Heyroth, F.F., “Halogens”, pp.831–857 in D.W.Fasset and D.D.Irish, Eds., Toxicology, Vol.II (2nd Ed.), in F.A.Patty, Industrial Hygiene and Toxicology.

    Google Scholar 

  67. Danger of Chlorine Gas“, Ges. Schiess-W.Springstoffw., Vol.35, p.155 (1940) J. Ind. Hyg. and Tox., 23, 148 (1941).

    Google Scholar 

  68. Patty, F.A., Ed., Ind. Hyg. and Toxicology, Vol.II, 2nd Ed. (1963).

    Google Scholar 

  69. ACGIH, “Documentation of TLV for Substances in Work Room Air”, (1971). “Guide for Short Term Exposures of the Public to Air Pollutants IV, Guide for Ammonia”, NRC, (1972).

    Google Scholar 

  70. Subcommittee on Hydrogen Sulphide, NAS Committee on Medical and Biological Effects of Environmental Pollutants, “Hydrogen Sulphide”, EPA 600/1–78–0, 18 February 1978.

    Google Scholar 

  71. Health and Safety Executive HSMO, “Threshold Limit Values for 1977”, Guidance note EH 15/1977.

    Google Scholar 

  72. Jones, J.P., “Hazards of Hydrogen Sulphide Gas”, Selected papers, Annual Gas Measuring Inst.

    Google Scholar 

  73. Patty, F.A., “Ind. Hyg. and Tox.”, Interscience Pub. NY, 2nd Ed., (1962), p.898.

    Google Scholar 

  74. Haggard, H.W., “The Toxicology of Hydrogen Sulphide”, J. Ind. Hyg., 7, 113–121 (1925).

    Google Scholar 

  75. Archibald, R.G., Hydrocarbon Processing, March 1977, p. 219–232.

    Google Scholar 

  76. Flury, F. and Zernik, F., “Schaedliche Gase”, Springer Verlag 1931.

    Google Scholar 

  77. Enviro Control Inc., “Vulnerability Model”, Report prepared for US Coast Guard, June 1975, Report No. CG-D-137–75.

    Google Scholar 

  78. US Atomic Energy Commission “Reactor Safety Study - an Assessment of Accident Risks in the U.S. Commercial Nuclear Power Plants”; WASH-1400, Oktober 1975, Appendix III “Failure Data” (and references therein).

    Google Scholar 

  79. Recht, J.L. “Systems Safety Analysis - Error Rates and Costs” National Safety News, June 1966.

    Google Scholar 

  80. Science Applications, Inc. “LNG Terminal Risk Assessment Study for Los Angeles, California”, Report prepared for Western LNG Terminal Company, December 1975.

    Google Scholar 

  81. Lees, F.P. “The Reliability of Instrumentation” Chemistry and Industry, 6th March 1976

    Google Scholar 

  82. Lees, F.P. “A Review of Instrument Failure Data” I. Chem. Eng. Symposium No. 47, 1976 (and references therein).

    Google Scholar 

  83. Skala, V. “Improving Instrument Service Factors” Instrumentation Technology, November 1974.

    Google Scholar 

  84. Green, A.E. and Bourne, A.J. “Safety Assessment with Reference to Automatic Protective Systems for Nuclear Reactors - Part 3”. UKAEA AMSB(S) R117–1976.

    Google Scholar 

  85. Upfold, A.T. Instrumentation Technology, February 1971.

    Google Scholar 

  86. Smith, T.A. and Warwick, R.G. “The Second Survey of Defects in Pressure Vessels Built to High Standards of Construction and its Relevance to Nuclear Primary Circuits”, Safety and Reliability Directorate, SRD R30, 1974.

    Google Scholar 

  87. Marsall, W. et al, “An Assessment of the Integrity of PWR Pressure Vessels”, UKAEA Report (October 1976).

    Google Scholar 

  88. Welker, J.R. et al, “Fire Safety Aboard LNG Vessels”, NTIS AD/A - 030 619, January 1976.

    Google Scholar 

  89. Bush, S.H. “Pressure Vessel Reliability” Trans. of AMSE - Journal of Pressure Vessel Technology, February 1975.

    Google Scholar 

  90. SRS Data Bank.

    Google Scholar 

  91. Jacobs, R.M. “Minimizing Hazards in Design” Quality Progress, October 1971.

    Google Scholar 

  92. Phillips C.A.G. and Warwick, R.G. “A Survey of Defects in Pressure Vessels Built to High Standards of Construction and its Relevance to Nuclear Primary Circuits”. UKAEA AHSB(S) R162 1969

    Google Scholar 

  93. Kletz T.A. “Specifying and Designing Protective Systems” A.I. Chem. Eng. Loss Prevention Vol. 6, 1972.

    Google Scholar 

  94. Lawley, H.G. and Kletz T.A. Chemical Engineering, 12th May 1975.

    Google Scholar 

Download references

Author information

Consortia

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rijnmond Public Authority. (1982). Assessment of Industrial Risks in the Rijnmond Area. In: Risk Analysis of Six Potentially Hazardous Industrial Objects in the Rijnmond Area, a Pilot Study. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2907-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2907-9_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-8371-5

  • Online ISBN: 978-94-017-2907-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics