Skip to main content

Forest Management Planning for Maintaining the Viability of Wildlife Populations

  • Chapter

Part of the book series: Managing Forest Ecosystems ((MAFE,volume 2))

Abstract

Ecological information about the impacts of forestry on wildlife populations have rarely been used in calculations of forest management planning. Some applications exist, where models predicting sizes of some wildlife populations have been used in optimisation calculations. When such models are used, it is important to take the inherent uncertainty into account. It is essential to know the probability that the size of the population of interest would fall below presumably critical limits. One useful tool in decision-making concerning wildlife populations is risk analysis. In risk analysis, viability of the populations is assessed by a stochastic population dynamics model. The population viability may, for instance, be expressed as the probability of the population surviving the next 1000 years. To make use of risk analysis in forest management planning, viability needs to be expressed as a function of forest-based characters. It may also be necessaty to sort out the risk due to different factors, such as initial population size and changes in the environment. In this paper, the possibility of using information about wildlife populations in forest management planning is considered. Special attention is given to the handling of uncertainty inherent in most ecological information.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alho, J., Kangas, J. Kolehmainen, O., 1996: Uncertainty in expert predictions of the ecological consequences of forest plans. Applied Statistics 45: 1–14.

    Google Scholar 

  • Alho, J., Kangas, J., 1997: Analyzing uncertainties in experts’ opinions of forest plan performance. Forest Science 43: 521–528.

    Google Scholar 

  • Bare, B.B. Mendoza, G.A., 1992: Timber harvest scheduling in a fuzzy environment. Canadian Journal of Forest Research 22: 423–428.

    Article  Google Scholar 

  • Burgman, M.A., Church, R, Ferguson, I., Gijsbers, R, Lau, A., Lindenmayer, D., Loyn, R, McCarthy, M. Vanderberg, W., 1994: Wildlife planning using FORPLAN: a review and examples from Victorian forests. Australian Forestry 57: 1131–1140.

    Google Scholar 

  • Burgman, M.A., Ferson, S. Akçakaya, H.R., 1993: Risk assessment in conservation biology. Population and Community Biology Series 12. Chapman Hall. 314 p.

    Google Scholar 

  • Draper, D., 1995: Assessment and propagation of model uncertainty. Journal of Royal Statistical Society, Series B 57: 45–97.

    Google Scholar 

  • Drechsler, M., Burgman, M.A. Menkhorst, P.W., 1998: Uncertainty in the population dynamics and its consequences for the management of the orange-bellied parrot Neophema Chrvsogaster. Biological Conservation 84: 269–281

    Google Scholar 

  • Caughley, G., 1994: Directions in conservation biology. Review. Journal of Animal Ecology 63: 215–244. Ginzburg, L.R, Ferson, S Akçakaya, H.R, 1990: Reconstructibility of density dependence and the conservative assessment of extinction risks. Conservation Biology 4: 63–70.

    Google Scholar 

  • Gong, P., 1998. Risk preferences and adaptive harvest policies for even-aged stand management. Forest Science 44: 496–506.

    Google Scholar 

  • Faucheux, S. Froger, G., 1995: Decision-making under environmental uncertainty. Ecological Economics 15: 29–42.

    Article  Google Scholar 

  • Ferson, S. Ginzburg, L.R, 1996: Different methods are needed to propagate ignorance and variability. Reliability Engineering and System Safety 54: 133–144.

    Article  Google Scholar 

  • Haight, R.G. Travis, L.E., 1997: Wildlife conservation planning using stochastic optimisation and importance sampling. Forest Science 43: 129–139.

    Google Scholar 

  • Hanski, L, 1989: Metapopulation dynamics: does it help to have more of the same? Trends in Ecology Evolution 4: 113–114.

    Article  CAS  Google Scholar 

  • Hanski, L, 199E Single-species metapopulation dynamics: concepts, models and observations. Biological Journal of the Linnean Society 42: 17–38.

    Google Scholar 

  • Hanski, I. Gilpin, I., 1991: Metapopulation dynamics: brief history and conceptual domain. Biological Journal of the Linnean Society 42: 3–16.

    Article  Google Scholar 

  • Harrison, S. Quinn, J.F., 1989: Correlated environments and persistence of metapopulations. Oikos 56: 293–298.

    Article  Google Scholar 

  • Hof, J.G. Pickens, J.B., 1991: Chance-constrained and chance-maximizing mathematical programs in renewable resource management. Forest Science 37: 308–325.

    Google Scholar 

  • Hof, J.G., Kent, B.M. Pickens, J.B., 1992: Chance constrained and chance maximisation with random yield coefficients in renewable resource optimisation. Forest Science 38: 305–323.

    Google Scholar 

  • Kangas, A. Kurki, S., 2000: Predicting the future of Capercaillie (Tetrad Urogallus) in Finland. Submitted manuscript.

    Google Scholar 

  • Kangas, J., 1992: Metsikan uudistamisketjun valinta - monitavoitteiseen hvÖtyteoriaan perustuva paatösanalyysimalli. Summary: Choosing the regeneration chain in a forest stand: A decision-model based on multi-attribute utility theory. Jocnsuun yliopiston luonnontieteellisiä julkaisuja 24. 230 s.

    Google Scholar 

  • Kangas, J., 1994: Incorporating risk attitude into comparison of reforestation alternatives. Scandinavian Journal of Forest Research 9: 297–304.

    Article  Google Scholar 

  • Kangas, J., Karsikko, J., Laasonen, L. Pukkala, T., 1993: A method for estimating the suitability function of wildlife habitat for forest planning on the basis of expertise. Silva Fennica 27: 259–268.

    Google Scholar 

  • Kangas, J., Loikkanen, T., Pukkala, T. Pyklilliincn, J., 1996: A participatory approach to tactical forest planning. Acta Forestalia Fennica 251. 24 p.

    Google Scholar 

  • Kokko, H., Lindström, J. Ranta, E., 1997: Risk analysis of hunting of seal population in the Baltic. Conservation Biology 11: 917–927.

    Article  Google Scholar 

  • Kokko, H. Lindström, J., 1998: Seasonal density dependence, timing of mortality, and sustainable harvesting. Ecological Modelling 110: 293–304.

    Google Scholar 

  • Lamberson, R, McKelvey, R., Noon, B. Voss, C., 1992: A dynamic analysis of spotted owl viability in a fragmented forest. Conservation Biology 6: 505–512.

    Google Scholar 

  • Lande, R, 1993: Risks of population extinction from demographic and environmental stochasticity and random catastrophes. The American Naturalist 142: 911–927.

    Article  Google Scholar 

  • Leskinen, P. Kangas, J., 1998: Analysing uncertainties of interval judgement data in multiple-criteria evaluation of forest plans. Silva Fennica 32: 363–372.

    Google Scholar 

  • Leslie, P.H., 1945: On the use of matrices in certain population mathematics. Biometrika 33: 183–212. Marshall, K. Edward-Jones G., 1998: Reintroducing capercaillie (Tetrad urogallus) into southern

    Google Scholar 

  • Scotland: identification of minimum viable populations at potential release sites. Biodiversity and Conservation 7: 275–296.

    Google Scholar 

  • McCarthy, M.A., Pearce, J.L. Burgman, M.A., 1994: Use and abuse of wildlife models for determining habitat requirements of forest fauna. Australian Forestry 57: 82–85

    Google Scholar 

  • McCarthy, M.A., Burgman, M.A. Ferson, S., 1995: Sensitivity analysis for models of population viability. Biological Conservation 73: 93–100.

    Google Scholar 

  • McCarthy, M.A., Burgman, M.A. Ferson, S., 1996: Logistic sensitivity analysis and bounds for extinction risks. Ecological Modelling 86: 297–303.

    Article  Google Scholar 

  • McCarthy, M.A., 1996: Extinction dynamics of the helmeted honeyeater: effects of demography, stochasticity, inbreeding and spatial structure. Ecological Modelling 85: 151–163.

    Article  Google Scholar 

  • McKelvey, R, 1996: Viability analysis of endangered species: a decision theoretic perspective. Ecological Modelling 92: 193–207.

    Article  Google Scholar 

  • Mendoza, G.A., Bare, B.B. Zhou, Z., 1993: A fuzzy multiple objective linear programming approach to forest planning under uncertainty. Agricultural Systems 41: 257–274.

    Google Scholar 

  • Mendoza, G.A. Sprouse, W., 1989: Forest planning and decision-making under fuzzy environments: an overview and illustration. Forest Science 35: 481–502.

    Google Scholar 

  • Mills, L.S., Hayes, S.G., Baldwin, C., Wisdom, M.J., Citta, J., Mattson, D.J. Murphy, K, 1996: Factors leading to different viability predictions for a grizzly bear data set. Conservation Biology 10: 863–873.

    Google Scholar 

  • von Neumann, J. Morgenstern, 0., 1947: Theory of games and economic bahm, ior. John Wiley. New York. 641 p.

    Google Scholar 

  • >Öhman, K. Eriksson, L.O., 1998: The core area concept in forming contiguous areas for long-term forest planning. Canadian Journal of Forest Research 28: 1032–1039.

    Google Scholar 

  • Pickens, J.B., Hof, J.G. Kent, B.M., 1991: Use of chance-constrained programming to account for stochastic variation in the A-matrix of large-scale linear programs. A Forestry application. Annals of Operations Research 31: 511–526.

    Google Scholar 

  • Pukkala, T. Kangas, J., 1993: A heuristic optimisation method for forest planning and decision-making. Scandinavian Journal of Forest Research 8: 560–570.

    Article  Google Scholar 

  • Pukkala, T. Kangas, J., 1996: A method for integrating risk and attitude towards risk into forest planning. Forest Science 42: 198–205.

    Google Scholar 

  • Raftery, A.E., Givens, G.H. Zeh, J.E., 1995: Inference from a deterministic population dynamic model for bowhead whale. Journal of American Statistical Association 90: 402–415.

    Google Scholar 

  • Reed, W.J., 1993: The decision to conserve or harvest old-growth forest. Ecological Economics 8: 45–69. Reed, M.J., Elphich, C.S. Oring, L.W., 1998: Life-history and viability analysis of the endangered Hawaiian stilt. Biological conservation 84: 35–35.

    Article  Google Scholar 

  • Rolstad, J, Wegge, P., 1989: Capercaillie Tetroo urogallus populations and modern forestry–a case for landscape ecological studies. Finnish Game Research 46: 43–52.

    Google Scholar 

  • Saaty, T.L., 1977: A scaling method for priorities in hierarchical stnictures. Journal of Mathematical Psychology 15: 234–281.

    Article  Google Scholar 

  • ether, B-E., Engen, S., Islam, A., McClcery, R. Perrins, C., 1998: Environmental stochasticity and extinction risk in a population of a small songbird, the great tit. The American Naturalist 151: 441–450.

    Google Scholar 

  • Salwasser, H., Mealey, S.P. Johnson, K, 1984: Wildlife population viability: a question of risk. Trans. N. Amer. Wildl. and Natur. Resour. Conf. 49: 421–439.

    Google Scholar 

  • Schaffer, M.L., 1981: Minimum population sizes for species conservation. Bioscience 31: 131–134. Sessions, J., 1992. Solving for habitat connections as a Steiner network problem. Forest Science 38: 203–207.

    Google Scholar 

  • Swart, J. Lawes, M.J., 1996. The effect of habitat patch connectivity on samango monkey (Cercopithecus mitts) metapopulation percistence. Ecological.Modelling 93: 57–74.

    Google Scholar 

  • Taylor, R.J. Haseler, M., 1993. Occurrence of potential nest trees and their use by birds in sclerophyll forest in north-east Tasmania. Australian Forestry 56: 165–171.

    Google Scholar 

  • Weintraub, A. Abramovich, A., 1995: Analysis of uncertainty of future timber yields in forest management. Forest Science 41: 217–234.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kangas, A.S., Kangas, J. (2001). Forest Management Planning for Maintaining the Viability of Wildlife Populations. In: von Gadow, K. (eds) Risk Analysis in Forest Management. Managing Forest Ecosystems, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2905-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2905-5_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5683-2

  • Online ISBN: 978-94-017-2905-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics