Skip to main content

Biochemical Methods

  • Chapter

Abstract

In spite of the economic importance of Rhizoctonia species, very little is known about the genetic variation and systematic relationships within and among this species complex. Identification of fungal species using conventional taxonomic criteria is difficult to apply within the Rhizoctonia complex. The lack of a useful fossil record, general absence of the teleomorphic stage, high phenotypic variation and their pathological diversity have been major impediments to progress in the field of systematics. The present system of identification of Rhizoctonia isolates belonging to the genera Thanatephorus and Ceratobasidium is based on morphology, pathology and the ability of their hyphae to anastomose when grown on solid media (Ogoshi et al., 1979; Ogoshi, 1987; Burpee et al., 1980). On the basis of different anastomosis reactions (Carling and Kuninaga, 1990), most investigators have resorted to classifying their isolates into distinct anastomosis groups (AGs) and subgroups. To date, 12 recognized AGs (designated as AG 1 through AG 11 and AG BI) and 12 subgroups (designated as AGs 1-IA; 1-IB; 1-IC; 2-1, 2-2IIB, 2-2IV, 4HG-1, 4HG-II, 6HG-1, 6GV, 9TP and 9TX) in R. solani, and 22 AGs have been identified in binucleate Rhizoctonia species (Sneh et al., 1991; Ogoshi et al., 1991). Although the AG and subgroup concepts represent the most successful method to date for classification, they provide little insight into the genetic diversity of these fungi.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams GC and Butler EE (1979) Serological relationships among anastomosis groups of Rhizoctonia solani. Phytopathology 69: 629–633.

    Article  Google Scholar 

  • Balali GR, Neate SM, Scott ES and Whisson DL (1995) Heterogeneity in pectic zymogram phenotypes of field isolates of Rhizoctonia solani AG 3. International symposium on Rhizoctonia, June 27–30, Noordwijkerhout, The Netherlands. (P-1–5).

    Google Scholar 

  • Barak R, Elad Y and Chet I (1986) The properties of L-fucose-binding agglutinin associated with the cell wall of Rhizoctonia solani. Arch. Microbiol. 144. 346–349.

    Article  CAS  Google Scholar 

  • Burpee LL, Sanders PL, Cole H, and Sherwood RT (1980) Anastomosis groups among isolates of Ceratobasidium cornigerum and related fungi. Mycologia 72: 689–701.

    Article  Google Scholar 

  • Carling DE and Kuninaga S (1990) DNA base sequence homology in Rhizoctonia solani Kühn:inter-and intra-group relatedness of anastomosis group 9. Phytopathology 80: 1362–1364.

    Article  CAS  Google Scholar 

  • Chang LO, Srb AM and Steward FC (1962) Electrophoretic separation of the soluble proteins of Neurospora. Nature, London 193: 756–759.

    Article  CAS  Google Scholar 

  • Chen W, Hoy. W and Schneider RW (1991) Comparison of soluble protein and isozyme for seven Pythium species and application of the biochemical data to Pythium systematics. Mycol. Res. 95:48–555

    Google Scholar 

  • Clare BG, Fientje NT, and Atkinson MR (1967) Electrophoretic patterns of oxidoreductases and other proteins as criteria in fungal taxonomy. Aust. J. Biol. Sci. 21: 275–295.

    Google Scholar 

  • Cruickshank RH and Wade GC (1980) Detection of pectic enzymes in pectin-acrylamide gels. Anal. Biochem. 197: 177–181.

    Article  Google Scholar 

  • Cubeta M, Echandi E, Abernethy T and Vilgalys R (1991) Characterization of anastomosis groups of binucleate Rhizoctonia spp. using restriction analysis of an amplified ribosomal RNA gene. Phytopathology 81: 1395–1400.

    Article  CAS  Google Scholar 

  • Damaj M, Jabaji-Hare SH, and Charest PM (1993) Isozyme variation and genetic relatedness in binucleate Rhizoctonia species. Phytopathology 83: 864–871.

    Article  CAS  Google Scholar 

  • Duncan S, Barton JE and O’Brien PA (1993) Analysis of variation in isolates of Rhizoctonia solani by random amplified polymorphic DNA assay. Mycol. Res. 97: 1075–1082.

    Article  CAS  Google Scholar 

  • Dusunceli F and Fox RTV (1992) Accuracy of methods for estimating the size of Thanatephorus cucumeris populations in soil. Soil Use and Management 8: 21–26.

    Article  Google Scholar 

  • Ferguson A (1980) Biochemical Systematics and Evolution. Wiley and Sons, New York, 194 pp.

    Google Scholar 

  • Giatis RD and Beaver RW (1990) Characterization of fatty acid methyl ester content of Clavibacter michiganensis subsp. michiganensis. Phytopathology 80: 318–321.

    Article  Google Scholar 

  • Hanson LC and Wells K (1991) Characterization of three Tremella species by isozyme analysis. Mycologia 83: 446–454.

    Article  CAS  Google Scholar 

  • Jabaji-Hare SH (1988) Lipid and fatty acid profiles of some vesicular-arbuscular mycorrhizal fungi:contribution to taxonomy. Mycologia 80: 622–629.

    Article  CAS  Google Scholar 

  • Kaufman P and Rothrock CS (1995) Evaluation of isolate diversity of Rhizoctonia solani subgroupl1. Phytopathology 85: 1125.

    Google Scholar 

  • Kellen JT and Peumans WJ (1991) Biochemical and serological comparison of lectins from different anastomosis groups of Rhizoctonia solani. Mycol. Res. 95: 1235–1241.

    Article  Google Scholar 

  • Kuninaga S (1986) Grouping of Rhizoctonia solani Kühn with physicochemical properties. Plant Prot. Jpn. 40: 35–40.

    Google Scholar 

  • Laroche JP, Jabaji-Hare SH and Charest PM (1993) Differentiation of two anastomosis groups of Rhizoctonia solani by isozyme analysis. Phytopathology 82: 1387–1393.

    Article  Google Scholar 

  • Liu ZL and Sinclair JB (1992) Genetic diversity of Rhizoctonia solani anastomosis group 2. Phytopathology 82: 778–787.

    Article  CAS  Google Scholar 

  • Liu ZL and Sinclair JB (1993) Differentiation of intraspecific groups within anastomosis group 1 of Rhizoctonia solani using ribosomal DNA internal transcribed spacer and isozyme comparisons. Can. J. Plant Pathol. 15: 272–280.

    Article  CAS  Google Scholar 

  • Liu ZL, Nickrent DL, and Sinclair JB (1990) Genetic relationships among isolates of Rhizoctonia solani anastomosis group-2 based on isozyme analysis. Can. J. Plant Pathol. 12: 376–382.

    Article  CAS  Google Scholar 

  • MacNish GC and Sweetingham MW (1993) Evidence of stability of pectic zymogram groups within Rhizoctonia solani AG 8. Mycol. Res. 97: 1056–1058.

    Article  Google Scholar 

  • Manocha, MS (1990) Cell-cell interaction in fungi. J. Plant Disease and Protection 97: 655–669.

    CAS  Google Scholar 

  • Mathiew JS and Brooker JD (1991) The isolation and characterization of polyclonal and monoclonal antibodies to anastomosis group 8 of Rhizoctonia solani. Plant Pathol. 40: 67–77.

    Article  Google Scholar 

  • May B, Roberts DW and Soper RS (1979) Intraspecific genetic variability in laboratory strains of Entomophthora as determined by enzyme electrophoresis. Exp. Mycol. 6: 289–297.

    Article  Google Scholar 

  • Micales JA and Stipes RJ (1987) On the conspecificity of Endothia eugeniae and Cryphonectria cubensis. Mycologia 79: 707–720.

    Article  Google Scholar 

  • Micales JA, Boude MR and Peterson, GL (1986) The use of isozyme analysis in fungal taxonomy and genetics. Mycotaxon 27: 405–449.

    Google Scholar 

  • Miller L and Berger T (1985) Bacteria identification by gas chromatography of whole cell fatty acids. Hewlett-Packard Application Note 228–42, Hewlett Packard, Avondale PA. 8 pp.

    Google Scholar 

  • Miller SA, Rittenburg JH, Petersen FP and Grothaus GD (1992) From the research bench to the market place:development of commercial diagnostic kits. In: Duncan JM and Torrence R (eds.) Techniques for The Rapid Detection of Plant Pathogens. (pp 208–221 ) Blackwell Scientific, Oxford.

    Google Scholar 

  • Neate SM and Cruickshank RH (1988) Pectic enzyme patterns of Ceratobasidium spp. and Rhizoctonia spp. associated with sharp eyespot-like lesions on cereals in South Australia. Trans. Brit. Mycol. Soc. 91: 267–272.

    Article  CAS  Google Scholar 

  • Neate SM, Cruickshank RH and Rovira AD (1988) Pectic enzyme patterns of Rhizoctonia solani isolates from agricultural soils in South Australia. Trans. Brit. Mycol. Soc. 90: 37–42.

    Article  Google Scholar 

  • Ogoshi A (1987) Ecology and pathogenicity of anastomosis and intraspecific groups of Rhizoctonia solani Kühn. Annu Rev. Phytopathol. 25: 125–143.

    Article  Google Scholar 

  • Ogoshi A, Cook RJ and Bassett EN (1991) Rhizoctonia species and anastomosis groups causing root rot of wheat and barely in the Pacific Northwest. Phytopathology 81: 784–788.

    Google Scholar 

  • Ogoshi A, Oniki M, Sakai R and Ui T (1979) Anastomosis grouping among isolates of binucleate Rhizoctonia. Trans. Mycol. Soc. Jpn. 20: 33–39.

    Google Scholar 

  • Oxford GS and Rollinson D. (eds.) (1983) Protein Polymorphism:Adaptive and Taxonomic Significance. The Systematics Association Special Volume no. 24. Academic Press, Inc. London.

    Google Scholar 

  • Rattazzi MC, Scandalios JG, and Whitt GS (eds.) (1983). Isozymes:Current Topics in Biological and Medical Research, vol. 10. Genetics and Evolution. Alan R. Liss, Inc. New York.

    Google Scholar 

  • Reynolds M, Weinhold AR and Morris TJ (1983) Comparison of anastomosis groups of Rhizoctonia solani by polyacrylamide gel electrophoresis of soluble proteins. Phytopathology 73: 903–906.

    Article  Google Scholar 

  • Schneider JHM, Schilder MT, Dijst G and Keijer J (1995) Anastomosis behavior, pathogenicity, and pectic zymograms of Rhizoctonia solani AG 2 in tulip. International symposium on Rhizoctonia, June 27–30, Norrwikerhout, The Netherlands. (P-1–8).

    Google Scholar 

  • Selander RK and Whittam TS (1983) Protein polymorphisms and the genetic structure of populations. In: Nei M and Koehn RK (eds.) Evolution of Genes and Proteins (pp 89–114 ), Sinauer Associates, Sunderland, Mass.

    Google Scholar 

  • Sneath PHA and Sokal RR (eds.) (1973) Numerical Taxonomy. The Principals and Practice of Numerical Classification. WH Freeman and Co., San Francisco. 573 pp.

    Google Scholar 

  • Sneh B, Burpee LL and Ogoshi A (1991) Identification of Rhizoctonia species. APS Press, St. Paul, Minnesota 133 pp.

    Google Scholar 

  • Stasz TE, Nixon K, Harman GE and Weeden NF (1989) Evaluation of genetic species and phylogenetic relationships in the genus Trichoderma by cladistic analysis of isozyme polymorphism. Mycologia 81: 577–580.

    Article  Google Scholar 

  • Stevens-Johnk J and Jones RK (1993) Differentiation of populations of AG 2–2 of Rhizoctonia solani of cellular fatty acids. Phytopathology 83: 278–293.

    Article  Google Scholar 

  • Stevens-Johnk J, Jones RK, Shew, HD and Carling DE (1993) Characterization of populations of Rhizoctonia solani AG 3 from potato and tobacco. Phytopathology 83: 854–858.

    Article  Google Scholar 

  • Sweetingham MW (1990) Coping with brown spot and root rots of lupines. J. Agric. Western Australia 31: 5–13

    Google Scholar 

  • Sweetingham MW, Cruickslmak RH and Wong DH (1986) Pectic zymograms and pathogenicity of the Ceratobasidiaceae. Trans. Brit. Mycol. Soc. 86: 305–311.

    Article  CAS  Google Scholar 

  • Thornton CR, Dewey FM and Gilligan CA (1994) Development of monoclonal antibody-based immunological assays for the detection of live propagules of Rhizoctonia solani in the soil. In: Schots A, Dewey FM and Oliver R (eds.) Modern Assays for Plant Pathogenic Fungi:Identification, Detection and quantification. (pp 29–35 ) CAB International Oxford, UK.

    Google Scholar 

  • Vranken AM, Van Damme EJM, Allen AK and Peumans WJ (1987) Purification and properties of an Nacetylgalactosamine specific lectin from the plant pathogenic fungus Rhizoctonia solani. FEB Letters 216: 67–72.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jabaji-Hare, S. (1996). Biochemical Methods. In: Sneh, B., Jabaji-Hare, S., Neate, S., Dijst, G. (eds) Rhizoctonia Species: Taxonomy, Molecular Biology, Ecology, Pathology and Disease Control. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2901-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2901-7_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4597-3

  • Online ISBN: 978-94-017-2901-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics