Skip to main content

Abstract

Rhizobacteria are active in plant rhizospheres and a certain proportion of them are capable to defend the roots against attack by deleterious and pathogenic microorganisms naturally, or as introduced biocontrol agents. Strains of certain rhizobacteria isolated from roots exhibit beneficial activity by controlling soilborne diseases and by promoting plant growth (Schroth and Hancock, 1981; Rovira et al.,1992). Many strains of rhizobacteria which are effective in biocontrol have been reported to produce antibiotics, siderophores, bacteriocins and cyanide. The role of these secondary metabolites in biocontrol has been demonstrated (Weller, 1988; Fravel, 1988).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arima K, Imanaka H, Kousaka M, Fukuda A and Tamura G (1964) Pyrrolnitrin, a new antibiotic substance, produced by Pseudomonas. Agr. Biol. Chem. 28: 575–576.

    Google Scholar 

  • Bakker PAHM, Weisbeek PJ and Sehippers B (1988) Siderophore production by plant growth-promoting Pseudomonas spp. J. Plant Nutr. 11: 925–933.

    Article  CAS  Google Scholar 

  • Brisbane PG and Rovira AD (1988) Mechanism of inhibition of Gaeumannomyces graminis var. tritici by fluorescent pseudomonads. Pl. Pathol. 37: 104–111.

    Article  CAS  Google Scholar 

  • Cox CD (1980) Iron uptake with ferripyochelin and ferric citrate by Pseudomonas aeruginosa. J.Bacteriol. 142: 581–587.

    PubMed  CAS  Google Scholar 

  • Dahiya JS (1992) Antibiotics production during control of brown girdling root-rot of Brassica napus (canola/rapeseed) by seed bacterization with Pseudomonas fluorescens. Ind. J. Exp. Biol. 30: 715–718.

    CAS  Google Scholar 

  • Fravel DR (1988) Role of antibiosis in the biocontrol of plant diseases. Annu. Rev. Phytopathol. 26: 75–91.

    Article  CAS  Google Scholar 

  • Gurrusiddaiah S, Weller DM, Sarkar A and Cook RJ (1986) Characterization of an antibiotic produced by a strain of Pseudomonas fluorescens inhibitory to Gaeumannomyces graminis var. tralci and Pythium spp. Antimicrob. Ag. Chemoth. 29: 488–495.

    Google Scholar 

  • Hamdan H, Weller DM and Thomashow L (1991) Relative importance of fluorescent siderophores and other factors in biological control of Gaeumennomyces graminis var. tritici by Pseudomonas fluorescens 2–79 and M4–80R. Appl. Env. Microbiol. 57: 3270–3277.

    Google Scholar 

  • Harrison LA, Letendre L, Kovacevich P, Pierson E and Weller D (1993) Purification of an antibiotic effective against Gaeumannomyces graminis var. tritici produced by a biocontrol agent, Pseudomonas aureofaciens. Soil Biol. Biochem. 25: 215–221

    Google Scholar 

  • Hasegawa S, Kodama F, Nakajima M and Murooka H (1990) Isolation of Pseudomonas spp. and antifungal agents against phytopathogenic fungi. Bull. College Agr. Vert. Medec., Nippon Univ. 47: 224–232.

    Google Scholar 

  • Homma Y and Suzui T (1989) Role of antibiotic production in suppression of radish damping-off by seed bacterization with Pseudomonas cepacia. Ann. Phytopathol. Soc. Jpn. 55: 643–652.

    Article  CAS  Google Scholar 

  • Homma Y, Sato Z, Hirayama F, Konno K, Shirahama H and Suzui T (1989) Production of antibiotics by Pseudomonas cepacia as an agent for biological control of soilbome plant pathogens. Soil Biol. Biochem. 21: 723–728.

    Google Scholar 

  • Homma Y, ChikuoY and Sayama M (1990) Effect of seed bacterization with strains of Pseudomonas cepacia differing antibiotic productivity on seedling damping-off and rhizomania of sugar beets. Ann. Phytopathol. Soc. Jpn. 56: 405.

    Google Scholar 

  • Howell CR and Stipanovic RD (1979) Control of Rhizoctonia solani on cotton seedlings with Pseudomonas fluorescens and with an antibiotic produced by the bacterium. Phytopathology 69: 480–482.

    Article  CAS  Google Scholar 

  • Howell CR and Stipanovic RD (1980) Suppression of Pythium ultimum-induced damping-off of cotton seedlings by Pseudomonas fluorescens and its antibiotic, pyoluteorin. Phytopathology 70: 712–715.

    Article  CAS  Google Scholar 

  • Howie WJ and Suslow TV (1991) Role of antibiotic biosynthesis in the inhibition of Pythium ultimum in the cotton spermosphere and rhizosphere by Pseudomonas fluorescens. MPMI 4: 393–399.

    CAS  Google Scholar 

  • Jayaswal RK, Fernandez MA, Visiutin L and Upadhyay RS (1992) Transposon Tn-5–259 mutagenesis of Pseudomonas cepacia to isolate mutants deficient in antifungal activity. Can. J. Microbiol. 38: 309–312.

    Google Scholar 

  • Keel C, Maurhafer M, Oberhänsli T, Voisard C, Haas D and Défago G (1991) Role of 2,4diacetylphloroglucinol in the suppression of take-all of wheat by a strain of Pseudomonas fluorescens. In: Beemster ABR, Bollen, GT, Gerlach M, Ruissen MA, Schippers B and Tempel A (eds.), Biotic Interactions and Soil-Borne Disease. (pp 335–339 ). Elsevier, Amsterdam.

    Chapter  Google Scholar 

  • Keel C, Sehwider U, Maurhofers M, Voisard C, Laville J, Burger U, Wirthner P, Haas D and Défago G (1992) Suppression of root disease by Pseudomonas fluorescens CHAO: Importance of the bacterial secondary metabolite 2,4-diacetylphloroglucinol. MPMI 5: 4–13.

    CAS  Google Scholar 

  • Keel C, Wirtlner PH, Oberhänsli TH, Voisard C, Burgaer V, Haas D and Defago G (1990) Pseudomonads as antogonists of plant pathogens in the rhizosphere: role of the antibiotic 2,4diacetylphloroglucinol in the suppression of black root rot of tobacco. Symbiosis 9: 327–342.

    CAS  Google Scholar 

  • Kempf HJ, Sinterhauf S, Muller M, Becker JO and Pachlatko P (1993) Production of pyrrolnitrin by a biocontrol bacterium in the rhizosphere of cotton and in the spermosphere of barley. 6th Int. Congr. of Plant Pathology, P 266. (Abstr.).

    Google Scholar 

  • Kijima T, and Arie T (1987) Biological control of Fusarium diseases by using companion plants inoculated with antibiotic bacteria (Pseudomonas gladioli M-2196). Plant Prot. 41: 129–133.

    Google Scholar 

  • Kloepper JW and Schroth MN (1981) Relationship of invitro antibiosis of plant growth-promoting rhizobacteria to plant growth and the displacement of root microflora. Phytopathology 71: 1020–1024.

    Article  Google Scholar 

  • Kraus J and Loper JE (1989) Tn5 insertion mutants of Pseudomonas fluorescens Pf5 altered in production of the antibiotics pyrrolnitrin and pyoluteorin. Phytopathology 79: 9–10.

    Google Scholar 

  • Lambert B, Leyns F, Van Rooyen L, Gossele F, Papon Y and Swings J (1987) Rhizobacteria of maize and their antifungal activities. Appl. Envir. Microbiol. 53: 1866–1871.

    Google Scholar 

  • Leach LD and Garber RH (1970) Control of Rhizoctonia. In: Parmeter JR Jr (ed.) Rhizoctonia solani: Biology and Pathology. (pp 189–198 ).

    Google Scholar 

  • Univ. California Press, Berkeley, Los Angeles and London Leisinger T and Margraff R (1978) Secondary metabolites of fluorescent pseudomonads. Microbiol. Rev. 43: 422–445.

    Google Scholar 

  • Leong J (1986) Siderophores: Their biochemistry and possible role in the biocontrol of plant pathogens. Annu. Rev. Phytopathol. 24: 187–209.

    Article  CAS  Google Scholar 

  • Loper JE and Buyer JS (1991) Siderophores in microbial interactions on plant surfaces. MPMI 4: 5–13.

    CAS  Google Scholar 

  • Nagahama M, Nagai Y, Lee WH, Hasegawa S, Kobayashi K and Ogoshi A (1988) Studies on seed bacterization of sugar beets. (V) Identification of the strain of antagonistic bacteria and production of antifungal substances and the plant growth promoting substances. Ann. Phytopathol. Soc. Jpn. 54: 116.

    Google Scholar 

  • Neilands JB (1981) Microbial iron compounds. Annu. Rev. Biochem. 50: 715–731.

    Article  PubMed  CAS  Google Scholar 

  • Neilands JB and Leong SA (1986) Siderophores in relation to plant growth and disease. Annu. Rev. Plant Physiol. 37: 187–208.

    Article  CAS  Google Scholar 

  • Ohto Y, Kobayashi K and Ogoshi A (1990) Studies on seed bacterization of sugar beets. (VII) Mechanism of suppression of preemergence damping-off of sugar beets caused by Rhizoctonia solani AG 4. Ann. Phytopathol. Soc. Jpn. 56: 143.

    Google Scholar 

  • Pameter JR Jr (ed.) (1970) Rhizoctonia solani: Biology and Pathology. Univ. California Press, Berkeley, Los Angeles and London, 255 pp.

    Google Scholar 

  • Paulitz T (1992) Biological control of damping-off diseases with seed treatments. In: Tjamos ES, Papavizas, GC and Cook RJ (eds.), Biological Control of Plant Diseases, (pp 145–155 ), Plenum Press, New York.

    Google Scholar 

  • Pierson III IS and Thomashow L (1992) Cloning and heterologous expression of the phenazine biosynthetic locus from Pseudomonas aureofaciens 30–84. MPMI 4: 330–339.

    Google Scholar 

  • Rosales AM, Thomashow L, Cook RJ and Mew TW (1995) Isolation and identification of antifungal metabolites produced by rice-associated antagonistic Pseudomonas spp. Phytopathology 85: 1028–1032.

    Article  CAS  Google Scholar 

  • Rovira AD and Ridge EH (1973) The use of a selective medium to study the ecology of Pseudomonas spp. in soil. Bull. Ecol. Res. Comm. (Stockholm) 17: 329–335.

    Google Scholar 

  • Rovira A, Ryder M and Harris A (1992) Biological control of root diseases with pseudomonads. In: Tjamos ES Papavizas, GC and Cook RJ (eds.), Biological Control of Plant Diseases, (pp 175–184 ) Plenum Press, New York.

    Google Scholar 

  • Schippers B, Bakker AW and Bakker PAHM (1987) Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. Annu. Rev. Phytopathol. 25: 339–358.

    Google Scholar 

  • Schroth MN and Hancock JG (1981) Selected topics in biological control. Annu. Rev. Microbiol. 35: 453–476.

    Article  PubMed  CAS  Google Scholar 

  • Shanahan P, O’Sullivan DJ, Simpson P, Glennon JD and O’Gara F (1992) Isolation of 2,4diacetylphloroglucinol from a fluorescent pseudomonad and investigation of physiological parameters influencing its production. Appl. Env. Microbiol. 58: 353–358.

    Google Scholar 

  • Teinze M, Hoosain MB, Barnes CL, Leong J and van der Helm D (1981) Structure of ferric pseudobactin, a siderophore from a plant growth promoting Pseudomonas. Biochem. 20: 6446–6457.

    Article  Google Scholar 

  • Thomashow L and Weller DM (19:’,) Role of a phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritici. J. Bacteriol. 170:3499–3508.

    Google Scholar 

  • Thomashow L, Weller DM, Bonsai’ RF and Pierson III LS (1990) Production of the antibiotic phenazine1-carboxylic acid by fluorescent Pseudomonas species in the rhizosphere of wheat. Appl. Env. Microbiol. 56: 908–912.

    Google Scholar 

  • Thomashow LS (1991) Molecular basis of antibiosis mediated by rhizosphere pseudomonads. In: Keel C, Koller B and Defago G (eds.), Thomashow LS, (pp 109–114 ) WPRS Bulletin.

    Google Scholar 

  • Van Peer R, Punte HLM, de Weger LA and Schippers B (1990) Characterization of root surface and endorhizosphere pseudomonads in relation to their colonization of roots. Appl. Env. Microbiol. 56: 2462–2471.

    Google Scholar 

  • Vincent MN, Harrison LA, Bracldn JM, Kovacevich PA, Mukerji P, Weller DM and Pierson EA (1991) Genetic analysis of the antifungal activity of a soilborne Pseudomonas aureofaciens strain. Appl. Env. Microbiol. 57: 2928–2934.

    Google Scholar 

  • Voisard C, Keel C, Haas D and Defago G (1989) Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. EMBO 8: 351–358.

    CAS  Google Scholar 

  • Weller DM (1984) Distribution of take-all suppressive strain of Pseudomonas fluorescens on seminal roots of winter wheat. Appl. Env. Microbiol. 48: 897–905.

    CAS  Google Scholar 

  • Weller DM (1988) Biological control of soil-borne plant pathogens in the rhizosphere with bacteria. Annu. Rev. Phytopathol. 26: 378–389.

    Article  Google Scholar 

  • Weller DM, Howie WJ and Cook RJ (1988) Relationship between in vitro inhibition of Gaeumannomyces graminis var. tritici and suppression of take-all of wheat by fluorescent pseudomonads. Phytopathology 78: 1094–1100.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Homma, Y. (1996). Antibiotics and Siderophore Producing Bacteria. In: Sneh, B., Jabaji-Hare, S., Neate, S., Dijst, G. (eds) Rhizoctonia Species: Taxonomy, Molecular Biology, Ecology, Pathology and Disease Control. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2901-7_40

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2901-7_40

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4597-3

  • Online ISBN: 978-94-017-2901-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics