Skip to main content

Mathematical Modelling of Two-Phase Flows

  • Chapter
Rheological Measurement
  • 286 Accesses

Abstract

When the size of the suspended particles is much smaller than the length scale of the flow, or equivalently the characteristic dimensions of the device in which the suspension is flowing, it is possible to treat the suspension as a homogeneous fluid having specific rheological properties, which can be investigated with classical experimental means. Owing to the number of parameters that may influence the rheology (particle concentration, size, geometry, deformability, type of flow, colloidal forces, etc.), it is usually extremely difficult, if not outright impossible, unambiguously to relate the few experimental rheological parameters (shear viscosity, normal stresses, elastic modulus, etc.) to the numerous intrinsic physical properties of the particulate fluid. It is thus the aim of suspension theory to establish a relationship between the microscopic parameters of the suspension and the measurable bulk properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

∹ 〉:

bulk value of enclosed quantity

*:

superscript for bulk particle properties

s:

superscript for interfacial particle properties

—:

superscript bar denoting symmetric deviatoric part, defined in eqn (16.45)

∂/ ∂ t :

partial derivative with respect to time

𝔇)\ 𝔇)t:

corotational derivative with respect to time, defined in eqn (16.43)

d :

characteristic length scale for incompressible particles

n i :

outer unit vector normal to particle surface, Fig. 16.1

N :

number density of particles

:

volume fraction of particles

d :

mean particle spacing

η :

viscosity of suspending medium

ρ :

density of suspending medium

γ:

shear rate

ω :

bulk vorticity intensity

P(C, t):

joint probability density function of finding particles in configuration C

x mi :

position of particle m between times t and t + at

f i :

constant body force per unit volume

δ ij :

Kronecker delta

V :

representative volume of suspension

∆L:

length scale of A F

eij :

SS local rate of strain tensor

σij :

local stress tensor

v i :

local velocity

v i :

deviation from mean velocity

p :

pressure, eqn (16.5)

P ij :

particle stress

α:

denotes a generic particle of AV, eqn (16.6)

V α , S α :

volume and surface area of a generic particle of AV, eqn (16.6).

f i :

inertia effect for particle motion, eqn (16.6)

Rep :

microscopic Reynolds number, eqn (16.7)

S αij :

deviatone dipole strength due to one particle, eqns (16.8) and (16.9)

F jα :

non-hydrodynamic resultant force on a particle at xff, eqn (16.10)

kT :

Boltzmann temperature, eqn (16.11)

S ij 〉:

bulk particle stress tensor, eqn (16.12)

Pc(C∣x 0i ):

normalized conditional probability density, eqn (16.13)

C jj :

measure of particle anisotropy and orientation

P’ :

conditional probability of finding one particle at x*¡ with orientation Q

v xi :

undisturbed bulk velocity field, eqn (16.16)

Ωij :

vorticity tensor, eqn (16.16)

λ :

viscosity ratio of dispersed fluid to bulk fluid, eqn (16.21)

E *:

elastic bulk modulus of particles

η s, E s :

viscosity and elastic modulus of particle interface

X i , Xi :

position of given point in reference state at time t

x :

distance from particle surface to centre of mass

f(x i , t) :

equation of deformed particle surface

F si :

force exerted by interface, eqns (16.25) and (16.26)

λ s :

viscosity ratio between interface and bulk fluid

k :

capillary number, eqns (16.27) and (16.28)

p’ :

deviation from main pressure, eqn (16.30)

T ij :

symmetric and traceless coefficient, eqn (16.30)

η r :

relative viscosity of suspension

A ijkl :

expression dependent on instantaneous orientation of an ellipsoid, eqn (16.37)

PeB :

Brownian motion Peclet number, eqns (16.38), (16.39) and

D :

rotation diffusion coefficient, eqn (16.38)

α:

particle axis ratio, eqn (16.40)

ui :

unit vector oriented along axis of a spheroid, eqn (16.40)

P 0 (u i , t) :

orientation probability density

A, B, C, F :

shape factors, eqn (16.42)

A’, B :

shape factors, eqn (16.44)

[η] :

intrinsic viscosity

N 1, N 2 :

normal stress differences

ε:

measures deviation from sphericity, eqns (16.47)-(16.49)

w i :

local electric potential, eqns (16.50)—(16.52)

μ :

local charge density, eqn (16.50)

z :

1/471 (dielectric constant of suspending medium)

n :

ion velocity, eqn (16.51)

e :

ion mobility, eqn (16.51)

z :

ion valence, eqns (16.51) and (16.53)

n :

ion number density, eqn (16.51)

e :

electronic charge, eqn (16.51)

k :

reciprocal Debye length, eqn (16.53)

n :

equilibrium ion number density, eqn (16.53)

C:

particle potential

PeE :

electrical Peclet number

H :

electrical Hartmann number

β :

first-order electroviscous correction to Einstein equation, eqn (16.54)

t:

suspension characteristic response time

D f :

capsule deformation, eqn (16.63)

τ1, τ2 :

relaxation times

Ą ij :

measure of in-plane interface deformation

L ij , M ij :

two linear combinations of deformation tensors C ij9 Ąij, eqns (16.67) and (16.68)

C ij :

measure of non-linearity of an elastic membrane constitutive law

K :

constant, eqn (16.71)

P 2 :

pair density, eqn (16.72)

r i :

distance of two spheres, eqn (16.72)

v ri :

relative velocity of two spheres, eqn (16.72)

D ij :

Brownian diffusion tensor, eqn (16.72)

F ρi :

electrostatic force between charged spheres, eqn (16.77)

U 2 :

electrostatic pair potential, eqn (16.77)

L :

characteristic particle separation, eqn (16.80)

b :

measures ratio of electrical to thermal forces, eqn (16.81)

P’ :

defined in eqn (16.85)

β1 :

coefficient, eqn (16.85)

m :

maximum concentration, eqn (16.87)

Ć :

constant, eqn (16.87)

d’ :

interparticle distance

L c :

cluster size

References

  1. G. K. Batchelor, J. Fluid Mech., 1970, 41, 545.

    Article  Google Scholar 

  2. Z. Hashin, Appl. Mech. Rev., 1964, 17, 1.

    Google Scholar 

  3. G. K. Batchelor, Ann. Rev. Fluid Mech., 1974, 6, 227.

    Article  Google Scholar 

  4. G. K. Batchelor, J. Fluid Mech., 1977, 83, 97.

    Article  Google Scholar 

  5. D. Barthes-Biesel and J. M. Rallison, J. Fluid Mech., 1981, 113, 251.

    Article  Google Scholar 

  6. D. Barthes-Biesel and H. Sgaier, J. Fluid Mech., 1985, 160 119.

    Article  Google Scholar 

  7. A. Einstein, Ann. Phys., 1906, 19, 289.

    Article  CAS  Google Scholar 

  8. G. B. Jeffery, Proc. Roy. Soc., 1922, A102, 161.

    Article  Google Scholar 

  9. A. Okagawa, R. G. Cox and S. G. Mason, J. Colloid Interface Sci, 1973, 45, 303.

    Article  Google Scholar 

  10. L. G. Leal and E. J. Hinch, J. Fluid Mech., 1971, 46, 685.

    Article  Google Scholar 

  11. L. G. Leal and E. J. Hinch, J. Fluid Mech., 1972, 55, 745.

    Article  Google Scholar 

  12. L. G. Leal and E. J. Hinch, Rheologica Acta, 1973, 12, 127.

    Article  Google Scholar 

  13. E. J. Hinch and L. G. Leal, J. Fluid Mech., 1972, 52, 683.

    Article  Google Scholar 

  14. E. J. Hinch and L. G. Leal, J. Fluid Mech., 1973, 57, 753.

    Article  Google Scholar 

  15. E. J. Hinch and L. G. Leal, J. Fluid Mech., 1976, 76, 187.

    Article  Google Scholar 

  16. F. P. Bretherton, J. Fluid Mech., 1962, 14, 284.

    Article  Google Scholar 

  17. H. Giesekus, Rheologica Acta, 1962, 2, 50.

    Article  CAS  Google Scholar 

  18. I. M. Krieger, Adv. Colloid Interface Sci., 1972, 3, 111.

    Article  CAS  Google Scholar 

  19. G. Chauveteau, J. Rheology, 1982, 26, 111.

    Article  CAS  Google Scholar 

  20. G. L. Hand, J. Fluid Mech., 1962, 13, 33.

    Article  Google Scholar 

  21. P. L. Frattini and G. G. Fuller, J. Fluid Mech., 1986, 168, 119.

    Article  CAS  Google Scholar 

  22. F. Booth, Proc. Roy. Soc., 1950, A203, 533.

    Article  CAS  Google Scholar 

  23. J. D. Sherwood, J. Fluid Mech., 1980, 101, 609.

    Article  Google Scholar 

  24. D. A. Saville, Ann. Rev. Fluid Mech., 1977, 9, 321.

    Article  CAS  Google Scholar 

  25. J. Stone-Masui and A. Watillon, J. Colloid Interface Sci, 1968, 28, 187.

    Article  CAS  Google Scholar 

  26. J. M. Rallison, Ann. Rev. Fluid Mech., 1984, 16, 45.

    Article  Google Scholar 

  27. J. D. Goddard and C. Miller, J. Fluid Mech., 1967, 28, 657.

    Article  Google Scholar 

  28. R. Roscoe, J. Fluid Mech., 1967, 28, 273.

    Article  Google Scholar 

  29. G. I. Taylor, Proc. Roy. Soc., 1934, A146, 501.

    Article  CAS  Google Scholar 

  30. R. G. Cox, J. Fluid Mech. 1969, 37, 601.

    Article  Google Scholar 

  31. N. A. Frankel and A. Acrivos, J. Fluid Mech., 1970, 44, 65.

    Article  Google Scholar 

  32. D. Barthes-Biesel and A. Acrivos, J. Fluid Mech., 1973, 61, 1.

    Article  Google Scholar 

  33. D. Barthes-Biesel and A. Acrivos, Int. J. Multiphase Flow, 1973, 1, 1.

    Article  Google Scholar 

  34. B. J. Bentley and L. G. Leal, J. Fluid Mech., 1986, 167, 241.

    Article  CAS  Google Scholar 

  35. D. Barthes-Biesel and V. Chhim, Int. J. Multiphase Flow, 1981, 7, 493.

    Article  CAS  Google Scholar 

  36. P. O. Brunn, J. Fluid Mech., 1983, 126, 533.

    Article  CAS  Google Scholar 

  37. M. Bredimas and M. Veyssié, J. Non—Newtonian Fluid Mech., 1983, 12, 165.

    Article  CAS  Google Scholar 

  38. M. Bredimas, M. Veyssié, D. Barthes-Biesel and V. Chhim, J. Colloid Interface Sci., 1983, 93, 513.

    Article  CAS  Google Scholar 

  39. W. B. Russel, J. Rheology, 1980, 24, 287.

    Article  CAS  Google Scholar 

  40. G. K. Batchelor and J. T. Green, J. Fluid Mech., 1972, 56, 375.

    Article  Google Scholar 

  41. G. K. Batchelor and J. T. Green, J. Fluid Mech., 1972, 56, 401.

    Article  Google Scholar 

  42. G. K. Batchelor, J. Fluid Mech., 1976, 74, 1.

    Article  Google Scholar 

  43. F. L. Saunders, J. Colloid Sci., 1961, 16, 13.

    Article  CAS  Google Scholar 

  44. F. Gadala-Maria and A. Acrivos, J. Rheology, 1980, 24, 799.

    Article  CAS  Google Scholar 

  45. R. Patzold, Rheologica Acta, 1980, 19, 322.

    Article  Google Scholar 

  46. W. B. Russel, J. Fluid Mech., 1978, 85, 209.

    Article  CAS  Google Scholar 

  47. C. F. Tanford and J. G. Buzzell, J. Phys. Chem., 1956, 60, 225.

    Article  CAS  Google Scholar 

  48. C. F. Fryling, J. Colloid Sci., 1963, 18, 713.

    Article  CAS  Google Scholar 

  49. N. A. Frankel and A. Acrivos, Chem. Eng. Sci., 1967, 22, 847.

    Article  Google Scholar 

  50. M. Zuzovsky, P. M. Adler and H. Brenner, Phys. Fluids, 1983, 26, 1714.

    Article  CAS  Google Scholar 

  51. K. C. Nunan and J. B. Keller, J. Fluid Mech., 1984, 142, 269.

    Article  CAS  Google Scholar 

  52. P. M. Adler, M. Zuzovsky and H. Brenner, Int. J. Multiphase Flow, 1985, 11, 361.

    Article  CAS  Google Scholar 

  53. P. G. de Gennes, Physico—Chemical Hydrodynamics, Vol. 2, Pergamon Press, 1981, p. 31.

    Google Scholar 

  54. J. F. Brady and G. Bossis, J. Fluid Mech., 1985, 155, 105.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Barthes-Biesel, D. (1993). Mathematical Modelling of Two-Phase Flows. In: Collyer, A.A., Clegg, D.W. (eds) Rheological Measurement. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2898-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2898-0_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-2900-0

  • Online ISBN: 978-94-017-2898-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics