Skip to main content

Consequences of depletion of stratospheric ozone for terrestrial Antarctic ecosystems: the response of Deschampsia antarctica to enhanced UV-B radiation in a controlled environment

  • Chapter
Responses of Plants to UV-B Radiation

Abstract

Mini UV lamps were installed over antarctic plants at Léonie Island, Antarctic peninsula, and shoot length measurements of Deschampsia antarctica were performed during the austral summer January—February 1999.

We studied the response of the antarctic hairgrass, Deschampsia antarctica to enhanced UV-B. In a climate room experiment we exposed tillers of Deschampsia antarctica, collected at Léonie Island, Antarctic peninsula, to ambient and enhanced levels of UV-B radiation. In this climate room experiment with 0, 2.5 and 5 kJ m−2 day−1 UV-BBE treatments we observed that length growth of shoots at 2.5 and 5 kJ m−2 day−1 UV-BBE was markedly reduced compared to 0 kJ m−2 day−1 UV-BBE. In addition, there was an increased number of shoots and increased leaf thickness with enhanced UV-B. The Relative Growth Rate (RGR) was not affected by UV-B, possibly because reduced shoot length growth by enhanced UV-B was compensated by increased tillering. Light response curves of net leaf photosynthesis of plants exposed to 5 kJ m−2 day−1 UV-BBE did not differ from those exposed to 0 kJ m−2 day−1 UV-BBE. The content of UV-B absorbing compounds of plants exposed to increasing UV-B did not significantly change.

Mini UV-B lamp systems were installed in the field, to expose the terrestrial antarctic vegetation at Léonie Island to enhanced solar UV-B. In that study, the increment of shoot length of tagged plants of Deschampsia antarctica during the January-February 1999 at Léonie Island, was recorded and compared to shoot length growth under controlled conditions.

The consequences of enhanced UV-B radiation as a result of ozone depletion for the terrestrial antarctic ecosytems are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, D. J., Nogues, S. & Baker, N. R. 1998. Ozone depletion and increased Dy-B radiation: is there a real threat to photosynthesis? J. Exp. Bot. 49: 1775–1788.

    Google Scholar 

  • Behrenfeld, M., Hardy, J., Gucinsky, H., Hanneman, A, Lee II, H & Wones, A. 1993. Effects of Ultraviolet-B radiation on primary production along latitudinal transsects in the South Pacific Ocean. Mar. Environ. Res 35.349–363.

    Google Scholar 

  • Björn, L. O. 1996. Effects of ozone depletion and increased tJV-B on terrestrial ecosystems. Int. J. Environ. Studies 51: 217–243.

    Google Scholar 

  • Björn, L. 0. 1999. UV-B effects: receptors and targets. Pp. 821–832. In: Singhal, G. S. et al. (eds), Concepts in Photobiology: Photosynthesis and Photomorphogenesis. Narosa Publishing House.

    Chapter  Google Scholar 

  • Björn, L.O. & Murphy, T.M. 1985. Computer calculations of solar ultraviolet radiation at ground level. Physiol. Vég. 23: 555–561.

    Google Scholar 

  • Björn, L. O. & Wang, T. 2001. Is provitamin D a UV-B receptor in plants? Plant Ecol. 154: 1–8 (this volume).

    Google Scholar 

  • Bornman, J. F. 1999. Localisation and functional significance of flavonoids and related compounds. Pp. 59–69. In: Rozema, J. (ed.). Stratospheric Ozone Depletion: the Effects of Enhanced UV-B Radiation on Terrestrial Ecosystem. Backhuys Publishers, Leiden.

    Google Scholar 

  • Buma, A. J. G., Van Hannen, E. J., Roza, L., Veldhuis, M. J. W. & Gieskes, W.W.C. 1995. Monitoring ultraviolet-B induced damage in individual diatom cells by immunofluorescent thymine dimer detection. J. Phycol. 31: 314–321.

    CAS  Google Scholar 

  • Caldwell, M. M. 1971. Solar UV irradiation and the growth and development of higher plants. Pp. 131–177. In: Giesen, A. C. (ed.), Photophysiology, Vol. 4. Academic Press, London.

    Google Scholar 

  • Caldwell, M. M., Camp, L. B., Warner, C. W. & Flint, S. D. 1986. Action spectra and their key role in assessing biological consequences of solar UV-B radiation change. Pp. 87–111. In: Worrest, R. C. & Caldwell, M. M. (eds), Stratospheric Ozone Reduction, Solar Ultraviolet Radiation and Plant Life, NATO ASI Series, Vol. G8. Springer-Verlag, Berlin.

    Google Scholar 

  • Caldwell, M. M., Teramura, A. H., Tevini, M. 1989. The changing solar ultraviolet climate and the ecological consequences for higher plants. Trends Ecol. Evol. 4: 363–367.

    Google Scholar 

  • Caldwell, M. M., Björn, L. O., Bornman, J. F., Flint, S. D., Kulandaivelu, G., Teramura, A. H. & Tevini, M. 1998. Effects of increased solar ultraviolet radiation on terrestrial ecosystems. J. Photochem. Photobiol. B46: 40–52.

    Google Scholar 

  • Convey, P. 1994. Photosynthesis and dark respiration in Antarctic mosses - an initial comparative study. Polar Biol. 14: 65–69. Convey, P. 1996a. Reproduction of Antarctic plants. Ant. Sci. 8: 127–134.

    Google Scholar 

  • Convey. P. 1996b. Overwintering strategies of terrestrial invertebrates in Antarctica - the significance of flexibility in extremely seasonal environments. Fur. J. Entomol. 93: 489–505.

    Google Scholar 

  • Convey, P. 1997. Environmental change: possible consequences for the life histories of antarctic terrestrial biota. Kor. J. Pol. Res. 8: 127–144.

    Google Scholar 

  • Convey, P. & Lewis Smith, R. I. 1993. Investment in sexual reproduction by antarctic mosses. Oikos 68: 293–302.

    Google Scholar 

  • Day, T. A., Ruhland, C. T.. Grobe, C. W & Xiong, F. 1999. Growth and reproduction of Antarctic vascular plants in response to warming and UV radiation in the field. Oecologia 119: 24–35.

    Article  Google Scholar 

  • Edwards, J. A. & Smith, R. I. L. 1988. Photosynthesis and respiration of Colobanthus quitensis and Deschampsia antarctica from the maritime Antarctic. Br. Antarct. Surv. Bull. 81: 43–63.

    Google Scholar 

  • Edwards. J. A. 1972. Studies in Colobanthus quitensis and Deschampsia antarctica. V. Distribution, ecology and vegetative perfomancc on Signy Island. Br. Antarct. Sure. Bull. 28: 11–28.

    Google Scholar 

  • Ehleringer, J. R. & Osmond, B. 1991. Stable isotopes. Pp. 281300. In: Pearcy, R. W. et al. (eds). Plant Physiological Ecology. Chapman and Hall, I,ondon.

    Google Scholar 

  • Farman, J. C., Gardiner, B. G. & Shanklin, J. D. 1985. Large losses of total ozone in Antarctica reveal seasonal CLOx/Nox interaction. Nature 315: 207–210.

    CAS  Google Scholar 

  • Fiscus, E. L. and Booker, F. L. 1995. Is increased UV-B a threat to crop photosynthesis and productivity? Photosynt. Res. 43: 8192.

    Google Scholar 

  • Fowbert, J. A. & Smith, R. I. L. 1994. Rapid population increases in native vascular plants in the Argentine Islands, Antarctic Peninsula. Aret. Alp. Res. 26: 290–296.

    Google Scholar 

  • Gleason, J. R, Bhartia, P. K., Herman, J. R., McPeters, R., Newman, P., Stolarski, R. S., Flynn, L., Labow, G., Larko, D., Seftor, C., Wellemeyer, C., Komhyr, W. D., Miller, A. J. & Planet, W. 1993. Record low global ozone in 1992. Science 260: 523–526.

    Article  Google Scholar 

  • Goudriaan, J. 1982. Potential production processes. Pp. 98–113. In: Penning de Vries, F. W. T. & Van Laar, H. H. (eds), Simulation of Plant Growth and Crop Production. Pudoc, Wageningen.

    Google Scholar 

  • Green, A. E. S., Sawada, T. & Shettle, E. P. 1974. The middle ultraviolet reaching the ground. Photochem. Photobiology 19: 251–259.

    Google Scholar 

  • Green. A. E. S., Cross, K. R. & Smith, L. A. 1980. Improved analytic characterisation of ultraviolet skylight. Photochem. Photobiol. 31: 59–65.

    Google Scholar 

  • Greene, S. W. 1970. Studies in Colobanthus quitensis and Deschampsia antarctica. I. Introduction. Br. Antarct. Surv. Bull. 23: 19–24.

    Google Scholar 

  • Greene, S. W. & Holtom, A. 1971. Studies in Colobanthus quitensis and Deschampsia antarctica. III. Distribution, habitats and performance in the Antarctic botanical tone. Br. Antarctic Surv. Bull. 26: 1–29.

    Google Scholar 

  • Gwynn-Jones, D. & Johanson, U. 1996. Growth and pigment production in two subarctic grass species under four different UV-B irradiation levels. Physiol. Plant. 97: 701–707.

    Google Scholar 

  • Gwynn-Jones, D., Bjorn, L. O., Callaghan, T. V., Gehrke, C. Johanson, U., Lee, J. A. & Sonesson, M. 1996. Effects of enhanced UV-B radiation and elevated concentrations of CO2 on a subarctic heathland. Pp. 197–207. In: Körner, Ch. & Bazzaz, E A. (eds), Carbon Dioxide, Populations and Communities. Academic Press, San Diego.

    Chapter  Google Scholar 

  • Gwynn-Jones, D., Lee, J. A., Callaghan, T. V. & Sonesson, M. 1997. Effects of enhanced UV-B radiation and elevated carbondioxide concentrations on subarctic forest heath ecosystems. Plant Ecol. 128: 242–249.

    Google Scholar 

  • Hofmann, D.J. 1996. The 1996 Antarctic ozone hole. Nature 383: 129.

    Article  CAS  Google Scholar 

  • Hofmann, D. J., Oltmans, S. J., Harris, J. M., Johnson, B. J. & Lathrop, J. A. 1997. Ten years of ozone sonde measurements at the South Pole: implications for recovery of springtime Antarctic ozone. J. Geophys. Res. 102: 8931–8943.

    Google Scholar 

  • Holdgate, M.W. 1964. Terrestrial ecology in the maritime Antarctic. Pp. 181–194. In: Carrick, R., Holdgate, M. & Prévost, J. (eds), Biologie Antarctique. Hermann, Paris.

    Google Scholar 

  • Holtom, A. & Greene, S.W. 1967. The growth and reproduction of Antarctic flowering plants. Pp. 323–337. In: Smith, J. E. (ed.), A Discussion on the Terrestrial Antarctic Ecosystem. Trans. R. Soc. Biol. Sci. 777.

    Google Scholar 

  • Huiskes, A. H. L., Gremmen, N. J. M. & Francke, J. W. 1997a. Morphological effects on the water balance of Antarctic foliose and fruticose lichens. Ant. Sci. 9: 36–42.

    Google Scholar 

  • Huiskes, A. H. L., Gremmen, N. J. M. & Francke, J. W. 1997b. The delicate stability of lichen symbiosis: comparative studies on the photosynthesis of the lichen Mastodia tesselata and its free-living phycobiont, the alga Prasiola crispa. Pp. 234–240. In: Battaglia, B., Valencia, J. & Walton, D. W. H. (eds), Antarctic Communities: Species, Structure and Survival B. Cambridge University Press, Cambridge.

    Google Scholar 

  • Huiskcs, A. H. L., Lud, D., Moerdijk-Poortvliet, T. C. W. & Rozema, J. 1999. Impact of UV-B radiation on Antarctic terrestrial vegetation. Pp. 313–337. In: Rozema, J. (ed.), Stratospheric Ozone Depletion; the Effects of Enhanced UV-B Radiation on Terrestrial Rcosystem. Backhuys Publishers, Leiden

    Google Scholar 

  • Jansen, M. A. K. Gaba, V. & Greenberg, B. 1998. Higher plants and UV-B radiation: balancing damage, repair and acclimation. Trends Plant Sci. 3: 131–135.

    Google Scholar 

  • Johanson, U. & Zcuthen, J. 1998. The ecological relevance of UV-B enhancement studies is dependent on tube type, tube age, temperature and voltage. J. Photochem. Photobiol. B: Biol. 44: 169–174.

    Google Scholar 

  • Karentz, D., Cleaver, J. E. & Michel, D. L. 1991a. Cell survival characteristics and molecular responses of Antarctic phyloplankton to UV-B radiation. J. Phycol. 27: 326–341.

    CAS  Google Scholar 

  • Karentz, D., McEuen, F. S., Land, M. C. & Dunlap, W. C. 1991b. Survey of mycosporine-like amino acid compounds in Antarctic marine organisms: potential protection from ultraviolet exposure. Mar. Biol. 108: 157–166.

    Google Scholar 

  • Kim, H. Y., Kobayashi, K., Nouchi, I. & Yoneyama, L. 1996. Enhanced UV-B radiation has little effect on growth, JtJC values and pigments of pot-grown rice (Orvza sativa) in the field. Physiol. Plant. 96: 1–5.

    Google Scholar 

  • Lud, D., Huiskes, A. H. L., Moerdijk, T. C. W. & Rozema, J. 2001. The effect of altered levels of UV-B radiation on an Antarctic grass and lichen. Plant Ecol. 54: 87–99 (this vomume).

    Google Scholar 

  • Lubin, D. & Frederick, J. E. 1991. The UV radiation of the Antarctic Peninsula: the roles of ozone and cloud cover. J. Appl. Meteorol. 30: 478–493.

    Google Scholar 

  • Levizou, E. & Mantas, Y. 2001. Combined effects of enhanced UV-B radiation and additional nutrients on growth of two Mediterranean plant species. Plant Ecol. 154: 179–186 (this issue).

    Google Scholar 

  • Madronich, S. 1992. Implications of recent total atmospheric ozone measurements for biologically active ultraviolet radiation reaching the earth’s atmosphere. Geophys. Res. Lett. 19: 37–40.

    Google Scholar 

  • Madronich, S., McKenzie, R. L., Caldwell, M. & Björn, L. 0. 1995. Changes in ultraviolet radiation reaching the earth’s surface. Ambio 24: 143–152.

    Google Scholar 

  • Marchant, H.J. 1997, Impacts of ozone depletion on Antarctic organisms. Pp. 367–374. In: Battaglia, B., Valencia, J. & Walton, D. W. H. (eds), Antarctic Communities: Species, Structure and Survival B. Cambridge University Press, Cambridge.

    Google Scholar 

  • Markham, K. R., Franke, A., Given, D. R. & Brownsey, P. 1990. Historical Antarctic ozone level trends from herbarium specimen flavonoids. Bull. Liaison Groupe Polyphenols 15: 230.

    Google Scholar 

  • McLeod, A. R. 1997. Outdoor supplementation systems for studies of the effects of increased UV-B radiation. Pp. 78–92. In:

    Google Scholar 

  • Rozema, J., Gieskes, W. W. C., Van de Geijn, S. C., Nolan, C. & De Boois, H. (eds), UV-B and Biosphere. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Meijkamp, B., Aerts, R., Van de Staaij, J., Tosserams, M., & Rozema, J. 1999. Effects of UV-B on secondary metabolites in plants. Pp. 71–99. In: Rozema, J. (ed.), Stratospheric ozone Depletion; the Effects of Enhanced UV-B Radiation on Terrestrial Ecosystem. Backhuys Publishers, Leiden.

    Google Scholar 

  • Meijkamp, B. B., Doodeman, G. & Rozema, J. 2001. The response of Vicia faba to enhanced UV-B radiation under low and near ambient PAR levels. Plant Ecol. 54: 135–146 (this volume).

    Google Scholar 

  • Montle!, P., Smith. A.& Keiller, D. 1999. Photosynthetic responses of selected Antarctic plant to solar radiation in the southern maritime Antarctic. Polar Res. 18: 229–235.

    Google Scholar 

  • Moore, D. M. 1970. Studies on Colobanthus quiten.si.s and Descharnpsia antarctica. II. Taxonomy, distribution and relationships. Br. Ant. Surv. 23: 63–80.

    Google Scholar 

  • Pilon, J. J., Lumbers, H., Baas, W., Tosserams, M., Rozema, J. & Atkin, O. K. 1999. Leaf waxes of slow-growing alpine and fast-growing lowland Poo species: inherent differences and responses to UV-B radiation. Phytochem. 50: 571–580

    CAS  Google Scholar 

  • Post, A. & I,arkum, A. W. D. 1993. UV absorbing pigments, photosynthesis and UV exposure in Antarctica: Comparison of terrestrial and marine algae. Aq. Bot. 45: 231–243.

    Google Scholar 

  • Ros, J. & Tevini, 1995. Interaction of UV-radiation and IAA during growth of seedlings and hypocotyl segments of sunflower. J. Plant. Physiol. 146: 295–302.

    Google Scholar 

  • Roscoe, H. K., Jones, A. E. & Lee, A. M. 1997. Midwinter start to Antarctic ozone depletion: evidence from observations and models. Science 278: 93–96.

    CAS  Google Scholar 

  • Rousseaux, M. C., Ballaré, C. L, Giordano, C. V., Scopel, A. L., Zima, A. M., Szwarcberg-Bracchitta, M., Searles, P. S., Caldwell, M. M. & Diaz, S. B. 1999. Ozone depletion and UVB radiation: Impact on plant DNA damage in southern South America. Proc. Nat. Acad. Sci. USA 96: 15310–15315.

    Google Scholar 

  • Rozema, J., Van de Staaij, J., Björn, L.-O. & Caldwell, M. t 997a. UV-B as an environmental factor in plant life: stress and regulation. Trends Ecol. Evol. 12: 22–28.

    Google Scholar 

  • Rozema, J., Tosserams, M., Nelissen, H. J. M.. Heerwaarden, L. v., Broekman, R. A. & Flierman, N. 19976. Stratospheric ozone reduction and ecosystem processes: enhanced UV-B radiation affects chemical quality and decomposition of leaves of te dune grassland species Calmnagrostis epigeios. Plant Ecol. 128: 284–295.

    Google Scholar 

  • Rozema, J., Van de Staaij, J. & Tosserams, M. 1997e. Effects of UV-B radiation on plants from agro-ecosystems and natural ecosystems. Pp. 213–232. In: Lumsden P.J. (ed.), Plants and UV-B: Responses to Environmental Change. Cambridge University Press, Cambridge.

    Chapter  Google Scholar 

  • Rozema, J., Gieskes, W. W. C., Van de Geijn, S. C., Nolan, C. & De Boois, H. 1997d. UV-B and Biosphere. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Rozema, J., Van de Staaij, J., Meijkamp, B., Lud, D., Moerdijk, T. & Huiskes, A. 1997e. Stratosperic ozone depletion and effects of enhanced UV-B radiation on terrestrial antarctic plants: the methodology of a mini-UV-B supplementation system. Circumpolar J. 12: 43–48.

    Google Scholar 

  • Rozema, J., Noordijk, A. J., Broekman, R. A., Van Been), A., Meijkamp, B. M., De Bakker, V., Van de Staaij,,.. W. M., Stroctenga, M., Bohneke, S. J. P., Konert, M., Kars, S., Peat, H., SMith, R. I. L. & Convey, P. 2001. (Poly)phenolic compounds in pollen and spores of antarctic plants as indicators of solar UV-B. Plant Ecol. 154: 9–26 (this vomume).

    Google Scholar 

  • Smith, R. I. L. 1985. Farthest south and highest occurrences of vascular plants in the Antarctic. Polar Res. 21: 170–183.

    Google Scholar 

  • Smith, R. I. L. 1994. Vascular plants as bioindicators of regional warming in Antarctica. Oecologia 99: 322–328.

    Article  Google Scholar 

  • Smith, R. I. L. 1996. Terrestrial and Freshwater Biotic Components of the Western Antarctic Peninsula. Ant. Res. Ser. 70: 15–59.

    Google Scholar 

  • Smith, R. I. L. & Poncet, S. 1985. New southernmost record for Antarctic flowering plants. Polar Res. 22: 425–427.

    Article  Google Scholar 

  • Smith, R. I. L. & Poncet, S. 1987. Descharnpsia antarctica and Colobandru,s quiten.sis in the Terra Firma Islands. Bull. Br. Antarct. Surv. 74: 31–35.

    Google Scholar 

  • Smith. R. I. L. & Stephenson, C. 1975. Preliminary growth studies on Festuca contraria and Deschmnp,sia antarctica on South Georgia. Br. Antarct. Surv. Bull. 41 /42: 59–75.

    Google Scholar 

  • Sokal, R. R. & Rohlf, F. J. 1995. Biometry. The principles and practice of statistics in biological research, 3rd edition. Freeman & Co. San Francisco, USA.

    Google Scholar 

  • Stolarski, R., Bojkov, R., Bishop, L., Zeferos, C.. Staehlin, J. & Zawodny, J. 1992. Measured trends in stratospheric ozone. Science 2. 56: 342–349.

    Google Scholar 

  • Sullivan, J. & Rozema, J. 1999. UV-B effects on terrestrial plant growth and photosynthesis. Pp. 39–57. In: Rozema, J. (ed.). Stratospheric Ozone Depletion: the Effects of Enhanced UV-B Radiation on Terrestrial Ecosystems. Backhuys Publishers, Leiden.

    Google Scholar 

  • Teramura, A. H. & Ziska, L. H. 1996. Ultraviolet-B radiation and photosynthesis. Pp. 435–450. In: Baker, N. R. (ed.), Photosynthesis and the Environment. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Tosserams, M. & Rozema, J. 1995. Effects of ultraviolet-B radiation (UV-B) on growth and physiology of the dune grassland species Calamagro.stis epigeios. Environ. Poll. 89: 209–214.

    Google Scholar 

  • Tosserams, M.. Pais dc Sa, A. & Rozema. J. 1996. The effect of solar UV radiation on four plant species occurring in a coastal grassland vegetation in The Netherlands. Physiol. Plant. 97: 731–739.

    Google Scholar 

  • Tosserams, M. Magendans, G. W. H. & Rozema, J. 1997. Differential effects of elevated ultraviolt-B radiation on plant species from a dune grassland ecosystem. Plant Ecol. 128: 266–281.

    Google Scholar 

  • Tosserams, M., Visser, A., Groen, M. Kalis, G., Magendans, E. & Rozema. J. 2001. Combined effects of CO2 concentration and enhanced UV-B radiation offaha bean. Plant Ecol. 154: 195–210 (this vomume).

    Google Scholar 

  • Vernet, M., Brody, E. A., Holm-Hansen, O. & Mitchell B. G. 1994. The response of Antarctic Phytoplankton to Ultraviolet Radiation: Absorption, Photosynthesis, and Taxonomic Composition. Ant. Res. Ser. 62: 143–158.

    Google Scholar 

  • Vincent, W. F. & Quesada, A. 1994. Ultraviolet Radiation Ell feelson Cyanobacteria: Implications for Antarctic Microbial Ecosystems. Ant. Res. Ser. 62: III - 124.

    Google Scholar 

  • Vincent, W.F. & Quesada, A. 1997. Microbial niches in the polar environment and the escape from UV radiation in non-marine habitats. Pp. 388–395. In: Battaglia, B., Valencia, J. & Walton, D. W. H. (eds), Antarctic Communities: Species, Structure and Survival. Cambridge University Press, Cambridge.

    Google Scholar 

  • Visser, A. J., Tosserams, M., Groen, M. W., Kalis, G., Kwant, R., Magendans, G. W. H. & Rozema, J. 1997. The combined effect of CO2 and supplemental UV-B radiation on faba bean. 3. Leaf optical properties, pigments. stomatal index and epidermal cell density. Plant Ecol. 128: 208–222.

    Google Scholar 

  • Xiong, S., Ruhland, C. T. & Day, T. A. 1999. Photosynthetic temperature response of the Antarctic vascular plants Colobanthus quiten•is and Deschampsia antarctica. Physiol. Plant. 106: 276–286.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rozema, J. et al. (2001). Consequences of depletion of stratospheric ozone for terrestrial Antarctic ecosystems: the response of Deschampsia antarctica to enhanced UV-B radiation in a controlled environment. In: Rozema, J., Manetas, Y., Björn, LO. (eds) Responses of Plants to UV-B Radiation. Advances in Vegetation Science, vol 18. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2892-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2892-8_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5353-4

  • Online ISBN: 978-94-017-2892-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics