Skip to main content

Part of the book series: Developments in Hydrobiology ((DIHY,volume 142))

Abstract

Many benthic marine invertebrate species have a dispersive larval stage in their life histories. Larvae typically spend hours, weeks, or months developing in plankton before they become competent to settle and metamorphose. Recruitment to benthic populations depends on the numbers of competent larvae transported to sites and/or the interaction between larvae and the surface of substratum. While there is considerable evidence that on large spatial scales, the number of competent larvae transported to sites is determined primarily by hydrodynamics, success of larval settlement on small spatial scales is mediated by biotic and abiotic characteristics of substratum. Larvae of many marine polychaetes require specific cues to settle and metamorphose. Cues can originate from conspecific or congeneric individuals, microbial films, sympatric species, food items, or habitat. Larval settlement in an individual species can be controlled by a single cue or a mixture of cues. Larval settlement of multiple species can be mediated by a common cue or a mixture of cues. Although a variety of chemicals, including proteins, free fatty acids, polysaccharides, inorganic ions, and neurotransmitters, have been suggested as inducing larval settlement of marine polychaetes, few natural cues have been isolated and structurally identified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Al-Ogily, S. M., 1985. Further experiments on larval behaviour of the tubicolous polychaete Spirorbis inornatus L’Hardy and Quievreux. J. exp. mar. Biol. Ecol. 86: 285–298.

    Article  Google Scholar 

  • Baloun, A. J. and D. E. Morse, 1984. Ionic control of settlement and metamorphosis in larval Haliotis rufescens (Gastropoda). Biol. Bull. 167: 124–138

    Article  CAS  Google Scholar 

  • Banse, K., 1986. Vertical distribution and horizontal transport of planktonic larvae of echinoderms and benthic polychaetes in an open coastal sea. Bull. mar. Sci. 39: 162–175.

    Google Scholar 

  • Barry, J. P., 1989. Reproductive response of a marine annelid to winter storms: An analog to fire adaptation in plants ? Mar. Ecol. Prog. Ser. 54: 99–107.

    Article  Google Scholar 

  • Beckman, M., T. Harder andP.Y. Qian, How dissolved free amino acids act as the environmental chemical cue for larval attachment and metamorphosis in the serpulid polychaete Hvdroides elegans. Mar. Ecol. Prog. Ser. (accepted).

    Google Scholar 

  • Bhaud, M., 1990a. Settlement conditions of Eupolymnia nebu/050 larvae. Experimental results and observations in the field: The usefulness of comparison. Interaction in benthic recruitment between hydrodynamics of water mass and behaviour of larvae. Oceanis (Doc. Oceanogr.). 16: 181–189

    Google Scholar 

  • Bhaud, M.. 1990b. The acquisition of benthic life style by Eupolvmnia nebulosa (Polychaeta, Terebellidae): An experimental approach with preliminary results). Vie Milieu. 40: 17–28.

    Google Scholar 

  • Bhaud, M. R. and C. P. Cazaux, 1990. Buoyancy characteristics of Lanice conchilega (Pallas) larvae (Terebellidae). Implications for settlement. J. exp. mar. Biol. Ecol. 141: 31–45.

    Article  Google Scholar 

  • Bhaud, M. and J. H. Cha, 1994. Larvae-substrate relationships of Eupolymnia nebulosa (Montagu), (Polychaeta, Terebellidae): An experimental analysis. Mem. Mus. Natn. Hist. Nat. Zool. 162: 371–381.

    Google Scholar 

  • Bhaud, M., C. Cazaux and M. H. Mathivat-Lallier, 1990. Delayed metamorphosis of polychaete larvae and a model for benthic life acquisition. Interaction in benthic recruitment between hydrodynamics of water mass and behaviour of larvae. Oceanis (Doc. Oceanogr.). 16: 207–223.

    Google Scholar 

  • Biggers, W. J. and H. Laufer, 1992. Chemical induction of settlement and metamorphosis of Capitella capitato Sp. I (Polychaeta) larvae by juvenile hormone-active compounds. Invert. Reprod. Dev. 22: 39–46.

    Article  CAS  Google Scholar 

  • Biggers, W. J. and H. Laufer, 1996. Detection of juvenile hormone-active compounds by larvae of the marine annelid Capitella sp. I. Arch. Insect. Biochem. Physiol. 32: 475–484.

    Article  CAS  Google Scholar 

  • Bryan, J. R, R. Y. Qian, J. L. Kreider and F. S. Chia, 1997a. Chemical induction of settlement and metamorphosis of the serpulid polychaete Hydroides elegans. Mar. Ecol. Prog. Ser., 146: 81–90.

    Article  CAS  Google Scholar 

  • Bryan, J. R, D. Rittschof and P. Y. Qian, 1997b. Settlement inhibition of bryozoan larvae by bacterial films and aqueous leathates. Bull. mar. Sci., 61: 849–857.

    Google Scholar 

  • Bryan, J. P., J. L. Kreider and R Y. Qian, 1998. Settlement of the polychaete Hydroides elegans on surfaces of the cheilostome bryozoan Bugula neritina: Evidence for a chemically mediated relationship. J. exp. mar. Biol. Ecol. 220: 171–190.

    Article  Google Scholar 

  • Burke, R. D., 1983. The induction of metamorphosis of marine invertebrate larvae: stimulus and response. Can. J. Zool. 47: 176–188.

    Google Scholar 

  • Burke, R. D., 1986. Pheromones and the gregarious settlement of marine invertebrate larvae. Bull. mar. Sci. 39: 323–331.

    Google Scholar 

  • Butman, C. A., 1987. Larval settlement of soft-sediment invertebrates: the spatial scales of pattern explained by active habitat selection and the emerging role of hydrodynamical processes. Oceanogr. mar. Biol. Rev. 25: 113–165.

    Google Scholar 

  • Butman, C. A., 1990. Sediment-trap experiments on the importance of hydrodynamical processes in distributing settling invertebrate larvae in near-bottom waters. J. exp. mar. Biol. Ecol. 134: 37–88.

    Article  Google Scholar 

  • Butman, C. A. and J. P. Grassle, 1992. Active habitat selection by Capitella sp. I larvae. 1. Two-choice experiments in still water and flume flows. J. Mar. Res. 50: 669–715.

    Article  Google Scholar 

  • Butman, C. A., J. P. Grassle and E. J. Buskey, 1988a. Horizontal swimming and gravitational sinking of Capitella sp. I, (Annelida: Polychaeta) larvae: Implications for settlement. Ophelia 29: 43–57.

    Article  Google Scholar 

  • Butman, C. A., J. R. Grassle and C. M. Webb, 1988b. Substrate choices made by marine larvae settling in still water and in a flume flow. Nature (London) 333: 771–773.

    Article  Google Scholar 

  • Carpizo-Ituarte, E. and M. G. Hadfield, 1998. Stimulation of metamorphosis in the polychaete Hydroides elegans Haswell (Serpulidae). Biol. Bull. 194: 14–24.

    Article  Google Scholar 

  • Chan, A. L. C. and G. Walker, 1998. The settlement of Pomatoceros lamarckii larvae (Polychaeta: Sabellida: serpulidae): a laboratory study. Biofouling, 12: 71–80.

    Article  Google Scholar 

  • Chia, F. S., 1974. Classification and adaptive significance of development patterns in marine invertebrates. Thalassia Jugos. 10: 121–130.

    Google Scholar 

  • Chia, F. S., 1989. Differential larval settlement of benthic marine invertebrates. In Ryland, J. S. and P. A. Tyler (eds), Reproduction, Genetics and Distributions of Marine Organisms, Olsen and Olsen, Fredensborg, Denmark: 3–12.

    Google Scholar 

  • Chia, F. S. and M. E. Rice (eds), 1978. Settlement and Metamorphosis of Marine Invertebrate Larvae. Elsevier, New York, 290 pp.

    Google Scholar 

  • Commito, J. A., 1982. Importance of predation by infaunal polychaetes in controlling the structure of a soft-bottom community in Marine, U.S.A. Mar. Biol. 68: 77–81.

    Article  Google Scholar 

  • Connell, J. H., 1985. The consequences of variation in initial settlement vs. post-settlement mortality in rocky intertidal communities. J. exp. mar. Biol. Ecol. 93: 11–45.

    Article  Google Scholar 

  • Corlett, J., 1948. Rates of settlement and growth of the `pile fauna’ of the Mersey Estuary. Proc. Liverpool. Biol. Soc. 56: 2–28.

    Google Scholar 

  • Crisp, D. J., 1974. Factors influencing the settlement of marine invertebrate larvae. In Grant, P. T. and A. M. Mackie (eds), Chemoreception in Marine Organisms, Academic Press., N.Y.: 177–265.

    Google Scholar 

  • Crisp, D. J., 1984. Overview of research on marine invertebrate larvae, 1980–1984: In Costlow, J. D. and R. C. Tipper (eds), Marine Biodeterioration: An Interdisciplinary Study. Naval Institute Press, Annapolis, MD: 103–126.

    Chapter  Google Scholar 

  • Cuomo, M. C., 1985. Sulphide as a larval settlement cue for Capitella sp. I. Biogeochemistry 1: 169–181.

    Article  Google Scholar 

  • Davis, A. R., N. M. Target, O. J. McConnell and C. M. Young, 1989. Epibiosis of marine algae and benthic invertebrates: natural products, chemistry and other mechanisms inhibiting settlement and overgrowth. Bioorg. mar. Chem. 3: 85–114.

    CAS  Google Scholar 

  • Dean, T. A., 1981. Structural aspects of sessile invertebrates as organizing forces in an estuarine fouling community. J. exp. mar. Biol. Ecol. 53: 163–180.

    Article  Google Scholar 

  • DeSilva, P. H. D. H., 1962. Experiments on choice of substrata by Spirobis larvae (Serpulidae). J. exp. Biol. 39: 483–490.

    Google Scholar 

  • Dirnberger, J. M., 1990. Benthic determinants of settlement for planktonic larvae: Availability of settlement sites for the tube-building polychaete Spirorbis.spirillum (Linnaeus) settling onto seagrass blades. J. exp. mar. Biol. Ecol. 140: 89–105.

    Article  Google Scholar 

  • Dubilier, N., 1988. H2S–A settlement cue or a toxic substance for Capitella sp. I larvae? Biol. Bull. 174: 30–38.

    Article  CAS  Google Scholar 

  • Eckelbarger, K. J., 1978. Metamorphosis and settlement in the Sabellariidae. In Chia, F. S. and M. E. Rice (eds), Settlement and Metamorphosis of Marine Invertebrate Larvae, Elsevier, New York: 145–164.

    Google Scholar 

  • Fenaux, L. and M. L. Pedrotti, 1988. Metamorphose des larves d’echinides en plein eau. P. S. Z. N. 1: Mar. Ecol. 9: 93–107.

    Article  Google Scholar 

  • Gaines, S. and J. Roughgarden, 1985. Larval settlement rate: a leading determinant of structure in an ecological community of the marine intertidal zone. Proc. Natn. Acad. Sci. U.S.A. 82: 181–186.

    Article  Google Scholar 

  • Gee, J. M., 1964. Chemical stimulation of settlement in larvae of Spirorhis rupe.stri.s (Serpulidae). Anim. Behay. 13: 181–186.

    Article  Google Scholar 

  • Grassle, J. P. and C. A. Butman, 1989. Active habitat selection by larvae of the polychaetes, Capitello spp. I and IL in a laboratory flume. In Ryland, J. S. and P. A. Tyler (eds), Reproduction. Genetics and Distributions of Marine Organisms, Olsen and Olsen, Fredensborg, Denmark: 107–114.

    Google Scholar 

  • Grassle, J. P., C. A. Butman and S. W. Mills, 1992. Active habitat selection by Capitello sp. I larvae. 2. Multiple-choice experiments in still water and flume flows. J. mar. Res. 50: 717–743.

    Article  Google Scholar 

  • Hadfield, M. G., 1986. Settlement and recruitment of marine invertebrates: a perspective and some proposals. Bull. mar. Sci. 39: 418–425.

    Google Scholar 

  • Hadfield, M. G., 1998. The D P Wilson lecture: Research on settlement and metamorphosis of marine invertebrate larvae: past, present and future. Biofouling, 12: 9–29.

    Article  Google Scholar 

  • Hadfield, M. G., C. C. Unabia, C. M. Smith and T. M. Michael, 1994. In Thompson, M. F., R. Nagabhushanam, R. Sarojini and M. Fingernail (eds), Recent Development in Biofouling Control, Settlement Preferences of the Ubiquitous Fouler H_vdroides elegans. AA. Balkema/Rotterdam: 65–74.

    Google Scholar 

  • Hannan, C. A., 1981. Polychaete larval settlement: correspondence of patterns in suspended jar collectors and in the adjacent natural habitat in Monterey Bay, California. Limnol. Oceanogr. 26 (1): 159–171.

    Article  Google Scholar 

  • Hannan, C. A., 1984. Planktonic larvae may act like passive particles in turbulent near-bottom flows. Limnol. Oceanogr. 29: 1108–1116.

    Google Scholar 

  • Harder, T. andP. Y. Qian, Amino acids as chemical signals for larval attachement and metamorphosis in the serpulid polychaete Hvdroides elegans (Haswell). Mar. Ecol. Prog. Ser. (In press).

    Google Scholar 

  • Hermans, C. 0., 1978. Metamorphosis in the opheliid polychaete Armandia brevis. In Chia, F.-S. and M. E. Rice (eds), Settlement and Metamorphosis of Marine Invertebrate Larvae. Elsevier, New York: 113–126.

    Google Scholar 

  • Hirata, K. Y. and M. G. Hadfield, 1986. The role of choline in metamorphic induction of Phestilla (Gastropoda, Nudibranchia). Comp. Biochem. Physiol. 84: 15–21.

    Google Scholar 

  • Hsieh, H. L., 1994. Larval development and substrate preference at settlement in Pseudopolvdora diopatra (Polychaeta: Spionidae), Invert. Reprod. Dev. 25: 205–214.

    Article  Google Scholar 

  • Huang, Z. G. and P. M. S. Mak, 1982. Studies on biofouling in Tolo Harbor, Hong Kong. In Morton, M. B. and C. K. Tseng (eds), The Marine Flora and Fauna of Hong Kong and Southern China Sea, Hong Kong University Press, Hong Kong: 767–787.

    Google Scholar 

  • Hunte, W., B. E. Conlin and J. R. Marsden, 1990. Habitat selection in the tropical polychaete Spirobranchus giganteus. I. Distribution on corals. Mar. Biol. 104: 87–92.

    Article  Google Scholar 

  • Jackson, G. A., 1986. Interaction of physical and biological processes in the settlement of planktonic larvae. Bull. mar. Sci. 39: 202–212.

    Google Scholar 

  • James, R. J. and A. J. Underwood, 1994. Influence of colour of substratum on recruitment of spirorbid tubeworms to different types of intertidal boulders. J. exp. mar. Biol. Ecol. 181: 105–115.

    Article  Google Scholar 

  • Jensen, R. A., 1992. Marine bioadhesive: Role for chemosensory recognition in a marine invertebrate. Biofouling 5: 177–193

    Google Scholar 

  • Jensen, R. A. and D. E. Morse, 1984. Intraspecific facilitation of larval recruitment: Gregarious settlement of the polychaete Phragmatopoma californica (Fewkes). J. exp. mar. Biol. Ecol. 83: 107–126.

    Article  Google Scholar 

  • Jensen, R. A. and D. E. Morse, 1990. Chemically induced metamorphosis of polychaete larvae in both the laboratory and the ocean environment. J. chem. Ecol. 16: 911–930.

    Article  CAS  Google Scholar 

  • Jensen, R. A., D. E. Morse, R. L. Petty and N. Hooker, 1990. Artificial induction of larval metamorphosis by free fatty acids. Mar. Ecol. Prog. Ser. 67: 55–71.

    Article  CAS  Google Scholar 

  • Keough, M. J. and B. J. Downes, 1982. Recruitment of marine invertebrates: the role of active larval choices and early mortality. Oecologia 54: 348–352.

    Article  Google Scholar 

  • Keough. M. J. and P. T. Raimondi, 1995. Responses of settling invertebrate larvae to bioorganic films: Effects of different types of films, J. exp. mar. Biol. Ecol. 185: 235–253.

    Article  Google Scholar 

  • Kirchman, D., S. Graham, D. Reish and R. Mitchell. 1982a. Bacteria induce settlement and metamorphosis ofJanua (Dexiospira) bra-

    Google Scholar 

  • Grube (Polychaeta: Spirorbidae). J. exp. mar. Biol. Ecol. 56: 153–163.

    Google Scholar 

  • Kirchman, D., S. Graham, D. Reish and R. Mitchell, 1982b. Lect ins may mediate in the settlement and metamorphosis of Janua (De.vio.spira) brasiliensis Grube (Polychaeta: Spirorbidae). Mar. Biol. Lett. 3: 131–142.

    CAS  Google Scholar 

  • Knight-Jones, E. W., 1951. Gregariousness and some other aspects of the setting behavior of Spirabis. J. mar. biol. Ass. U.K. 30: 201–222.

    Article  Google Scholar 

  • Lagadeuc, Y., 1991. Mud to Polydora ciliata, annelid polychaete: Origin and effect on larval settlement. Cah. biol. mar. 32: 439–450.

    Google Scholar 

  • Lau, K.-K. and P. Y. Qian, 1997. Phlorotannis and their analogs as larval settlement inhibitors of a tube-building polychaete Hydroides elegans (Hawell) Mar. Ecol. Prog. Ser. 159: 219–227.

    Article  CAS  Google Scholar 

  • Lau, S. C. K. and P. Y. Qian, Bacteria-mediated larval settlement of the serpulid polychaete Hvdroides elegans. Mar. Biol. (accepted).

    Google Scholar 

  • Lee. S. W. and L. B. Trott, 1973. Marine succession of fouling organisms in Hong Kong, with a comparison of woody substrates and common, locally-available, antifouling paints. Mar. Biol. 20: 101–108.

    Article  Google Scholar 

  • Luckenhach, M. W., 1987. Effects of adult infauna on new recruits: Implications for the role of hiogenic refuges. J. exp. mar. Biol. Ecol. 105: 197–206.

    Article  Google Scholar 

  • Mackay, T. F. C. and R. W. Doyle, 1978. An ecological genetic analysis of the settling behaviour of a marine polychaete. I. Probability of settlement and gregarious behaviour, Heredity 40 (1): 1–12.

    Article  Google Scholar 

  • Maki, J. S. and R. Mitchell, 1985. Involvement of lectins in the settlement and metamorphosis of marine invertebrate larvae. Bull. mar. Sci. 37: 675–683.

    Google Scholar 

  • Maki, J. S., D. Rittschof, J. D. Costlow and R. Mitchell, 1988. Inhibition of attachment of larval barnacles, Balanus arnphitrite, by bacterial surface films. Mar. Biol. 97: 199–206.

    Article  Google Scholar 

  • Marsden, J. R., 1987. Coral preference behaviour by planktotrophic larvae of Spirobranchus giganteus corniculatus (Serpulidae: Polychaeta). Coral Reefs 6: 71–74.

    Article  Google Scholar 

  • Marsden, J. R., 1991. Responses of planktonic larvae of the serpulid polychaete Spirobranchus polvicerus var: augeneri to an alga, adult tubes and conspecific larvae. Mar. Ecol. Prog. Ser. 71: 245–251.

    Article  Google Scholar 

  • Marsden, J. R. and J. Meeuwig, 1990. Preferences of planktotrophic larvae of the tropical serpulid Spirobranchus giganteus (Pallas) for exudates of corals from a Barbados reef. J. exp. mar. Biol. Ecol. 137: 95–104.

    Article  Google Scholar 

  • Marsden, J. R., B. E. Conlin and W. Hunte, 1990. Habitat selection in the tropical polychaete Spirobranchus giganteus. 2. Larval preferences for corals. Mar. Biol. 104: 93–99.

    Article  Google Scholar 

  • Mary, A., V. Mary, R. Sarojini and R. Nagabhushanam, 1994. Bacteriostatic compounds in extracts of marine animals from the Indian Ocean, Recent Developments In Biofouling Control, Oxford and IBH, New Delhi (INDIA): 229–239.

    Google Scholar 

  • Mathivat-Lallier, M. H. and C. Cazaux, 1990. Larval exchange and dispersion of polychaetes between a bay and the ocean. J. Plankton Res. 12: 1163–1172.

    Article  Google Scholar 

  • Meadows, R. S. and J. I. Campbell, 1972. Habitat selection by aquatic invertebrates. Adv. mar. Biol. 10: 271–382.

    Google Scholar 

  • Morse, A. N. C., 1991. How do planktonic larvae know where to settle ? Am. Sci. 79: 154–167.

    Google Scholar 

  • Morse, D. E., 1990. Recent progress in larval settlement and metamorphosis: closing the gaps between molecular biology and ecology. Bull. mar. Sci. 46: 465–483

    Google Scholar 

  • Morse, D. E., A. N. C. Morse and W. Tien, 1993. Marine biotechnology: Control of larval metamorphosis, Biotechnology 206–219.

    Google Scholar 

  • Mullineaux, L. S. and E. D. Garland, 1993. Larval recruitment in response to manipulated field flows. Mar. Biol. 116: 667–683.

    Article  Google Scholar 

  • Nelson, W. G., 1979. Observations on the settlement patterns of fauna (Dexiospira) brasiliensis (Polychaeta: Serpulidae), Estuaries 2 (4): 213–217.

    Article  Google Scholar 

  • Nishi, E., 1992. Reef building polychaetes, sabellariids ( Annelida, Sedentaria). Bull. Coll. Sci. Univ. Ryukyus/Ryudai Rigakubu Kiyo, no. 53.

    Google Scholar 

  • O’Connor, R. J. and P. Lamont, 1978. The spatial organization of intertidal Spirorbis community. J. exp. mar. Biol. Ecol. 32: 143–169.

    Article  Google Scholar 

  • Okamoto, K., A. Watanabe, N. Watanabe and K. Sokoto, 1995. Induction of larval metamorphosis in serpulid polychaetes by L-DOPA and catecholamines. Fish. Sci. 61: 69–74.

    CAS  Google Scholar 

  • Pawlik, J. R., 1986. Chemical induction of larval settlement and metamorphosis in the reef-building tube worm Phragmatopoma californica (Sabellariidae: Polychaeta). Mar. Biol. 91: 59–68.

    Article  CAS  Google Scholar 

  • Pawlik, J. R., 1988a. Larval settlement and metamorphosis of two gregarious sabellariid polychaetes: Sabellaria alveolata compared with Phragmatopoma californica. J. mar. biol. Ass. U. K. 68: 101–124.

    Article  CAS  Google Scholar 

  • Pawlik, J. R., 1988b. Larval settlement and metamorphosis of sabellariid polychaetes, with special reference to Phragmatopoma lapidosa, a reef-building species, and Sabellaria floridensis, a non-gregarious species. Bull. mar. Sci. 43: 41–60.

    Google Scholar 

  • Pawlik, J. R., 1990. Natural and artificial induction of metamorphosis of Phragmatopoma lapidosa californica (Polychaeta: Sabellariidae), with a critical look at the effects of bioactive compounds on marine invertebrate larvae. Bull. mar. Sci. 46: 512–536.

    Google Scholar 

  • Pawlik J. R., 1992. Chemical ecology of the settlement of benthic marine invertebrates. Oceanogr. mar. Biol. Rev. 30: 273–335.

    Google Scholar 

  • Pawlik, J. R. and C. A. Butman, 1993. Settlement of a marine tube worm as a function of current velocity: Interacting effects of hydrodynamics and behavior, Limnol. Oceanogr. 38: 1730–1740.

    Google Scholar 

  • Pawlik, J. R. and F. S. Chia, 1991. Larval settlement of Sabellaria cementariurn Moore and comparisons with other species of sabellariid polychaetes. Can. J. Zool., 69: 765–770.

    Article  Google Scholar 

  • Pawlik, J. R. and D. J. Faulkner, 1986. Specific free fatty acids induce larval settlement and metamorphosis of the reef-building tube worm Phragmatopoma californica (Fewkes). J. exp. mar. Biol. Ecol. 102: 301–310.

    Article  CAS  Google Scholar 

  • Pawlik, J. R. and D. J. Faulkner, 1988. The gregarious settlement of sabellariid polychaetes: New perspectives on chemical cues. Marine Biodeterioration: Advanced Techniques Applicable to Indian Ocean 475–487.

    Google Scholar 

  • Pawlik, J. R. and D.J. Mense, 1994. Larval transport, food limitation, ontogenetic plasticity, and the recruitment of sabellariid polychaetes. In Wilson, H. J. Jr., S. A. Stricker and G. L. Shinn (eds), Reproduction and Development of Marine Invertebrates, Johns Hopkins University Press, Baltimore, MD: 275–286.

    Google Scholar 

  • Pawlik, J. R., C. A. Butman and V. R. Starczak, 1991. Hydrodynamic facilitation of gregarious settlement of a reef-building tube worm. Science 251: 421–424.

    Article  PubMed  CAS  Google Scholar 

  • Pearce, C. M. and R. E. Scheibling, 1990. Induction of settlement and metamorphosis in the sand dollar Echinarachnius parma: evidence for an adult-associated factor. Mar. Biol. 107: 363–369.

    Article  Google Scholar 

  • Pearce, C. M. and R. E. Scheibling, 1991. Effect of macroalgae, microbial films, and conspecifics on the induction of metamorphosis of the green sea urchin Strongylocentrotus droebachiensis (Müller). J. exp. mar. Biol. Ecol 107: 147–162.

    Article  Google Scholar 

  • Pechenik, J. A. and P. Y. Qian, 1998. Onset and maintenance of metamorphic competence in the marine polychaete Hydroides elegans Haswell in response to three chemical cues. J. exp. mar. Biol. Ecol., 226: 51–74.

    Article  Google Scholar 

  • Potswald, H. E., 1978. Metamorphosis in Spirorbis (Polychaeta). In Chia, F.-S. and M. E. Rice (eds), Settlement and Metamorphosis of Marine Invertebrate Larvae. Elsevier, New York: 127–143.

    Google Scholar 

  • Qian, P. Y. and F. S. Chia, 1993. Larval growth and development as influenced by food limitation in two polychaetes: Capitella sp. and Polydora ligni. J. exp. mar. Biol. Ecol., 166: 93–105.

    Article  Google Scholar 

  • Qian, P. Y. and J. A. Pechenik, 1998. Effects of larval starvation and delayed metamorphosis on juvenile survival and growth of the tube-dwelling polychaete Hydroides elegans (Haswell). J. exp. mar. Biol. Ecol. 227: 169–185.

    Google Scholar 

  • Qiu, J. W. and P. Y. Qian, 1997. Combined effects of salinity, ternperature and food concentration on the early development of the polychaete Hydroides elegans (Haswell, 1883). Mar. Ecol. Prog. Ser. 152: 79–88.

    Article  Google Scholar 

  • Rodriguez, S. R., F. R. Ojeda and N. C. Inestrosa, 1993. Settlement of benthic marine invertebrates. Mar. Ecol. Prog. Ser. 97: 193–207.

    Article  Google Scholar 

  • Roughgarden, J., S. Gaine and H. Possingham, 1988. Recruitment dynamics in complex life cycles. Science 241: 460–466.

    Article  Google Scholar 

  • Scheltema, R. S., 1974. Biological interactions determining larval settlement of marine invertebrates. Thalassia Jugosl. 10: 263–269.

    Google Scholar 

  • Scheltema, R. S., I. P. Williams, M. A. Shaw and C. Loudon, 1981. Gregarious settlement by the larvae of Hydroides dianthus (Polychaeta: Serpulidae). Mar. Ecol. Prog. Ser. 5: 69–74

    Article  Google Scholar 

  • Snelgrove, P. V. R., 1994. Hydrodynamic enhancement of invertebrate larval settlement in microdepositional environments: Colonization tray experiments in a muddy habitat. J. exp. mar. Biol. Ecol. 176: 149–166.

    Article  Google Scholar 

  • Snelgrove, P. V. R., C. A. Butman and J. R. Grassle, 1993. Hydrodynamic enhancement of larval settlement in the bivalve Mulinia lateralis (Say) and the polychaete Capitello sp. I in microdepositional environments. J. exp. mar. Biol. Ecol. 168: 71–109.

    Article  Google Scholar 

  • Shek, C. T., 1997. Comparative studies of macrofouling on plastics, Mphil. Thesis, The Hong Kong University of Science and Technology, Hong Kong, 81 pp.

    Google Scholar 

  • Tamaki, A., 1985. Inhibition of larval recruitment of Armandia sp. (Polychaeta: Opheliidae) by established adults of Pseudopolydora paucibranchiata (Okuda) (Polychaeta: Spionidae) on an intertidal sand flat. J. exp. mar. Biol. Ecol. 87: 67–82.

    Article  Google Scholar 

  • Thiebaut, E., J. C. Dauvin and Z. X. Wang. 1996. Tidal transport of Pectinaria koreni postlarvae (Annelida: Polychaeta) in the Bay of Seine (eastern English Channel). Mar. Ecol. Prog. Ser. 138: 63–70.

    Article  Google Scholar 

  • Thomas, F. I. M., 1996. Performance consequences of aggregated settlement in the polychaete Phragmatopoma californica. Twenty-fourth annual benthic ecology meeting, held in Columbia, South Carolina, 1996, 80 pp.

    Google Scholar 

  • Thorson, G., 1950. Reproductive and larval ecology of marine bottom invertebrates. Biol. Rev. 25: 1–45.

    Article  Google Scholar 

  • Toonen, R. J. and J. R. Pawlik, 1994. Foundations of gregariousness. Nature 370: 51 1–512

    Google Scholar 

  • Toonen, R. J. and J. R. Pawlik, 1996. Settlement of the tube worm Hydroides dianthus (Polychaeta: Serpulidae): cues for gregarious settlement. Mar. Biol. 126: 725–733.

    Article  Google Scholar 

  • Trapido-Rosenthal, H. G. and D. E. Morse, 1986. Availability of chemosensory receptors is down-regulated by habituation of larvae to a morphogenetic signal. Proc. natn. Acad. Sci. U.S.A., 83: 7658–7662.

    Article  CAS  Google Scholar 

  • Waters, L. J., M. G. Hadfield and K. A. del Carmen, 1997. The importance of larval choice and hydrodynamics in creating aggregations of Hvdroides elegans (Polychaete: Serpulidae). Invert. Biol. 116: 102–114.

    Article  Google Scholar 

  • Watzin, M. C., 1986. Larval settlement into marine soft-sediment systems: Interactions with the meiofauna. J. exp. mar. Biol. Ecol. 98: 65–113.

    Article  Google Scholar 

  • Williams, G. B., 1964. The effect of extracts of Fucus serrates in promoting the settlement of larvae of Spirobis borealis (Polychaeta). J. mar. biol. Ass. U.K. 45: 397–414.

    Article  Google Scholar 

  • Wilson, D. P., 1932. On the mitraria larva of Owenia Chaije. Phil. Trans. r. Soc. London Ser. B, 221: 231–334.

    Article  Google Scholar 

  • Wilson, D. P., 1937. The infulence of the substratum on the metamorphosis of Nolomastus larvae. J. mar. biol. Ass. U.K. 22: 227–243.

    Article  Google Scholar 

  • Wilson, D. P., 1948. The relation of the substratum to the metamorphosis of Ophelia larvae, J. mar. biol. Ass. U.K. 27. 723–760.

    Article  Google Scholar 

  • Wilson, D. P., 1952. The influence of the nature of the substratum on the metamorphosis of the larvae of marine animals, especially the larvae of Ophelia bicornis Savigny. Ann. Inst. Oceanogr. Monaco. 27: 49–156.

    Google Scholar 

  • Wilson, D. P., 1955. The role of micro-organisms in the settlement of Ophelia bicornis Savigny. J. mar. biol. Ass. U.K. 34: 531–543.

    Article  Google Scholar 

  • Wilson. D. P., 1968. The settlement behaviour of the larvae of Sabellaria alveolata (L.). J. mar. biol. Ass. U.K. 48: 387–435

    Google Scholar 

  • Wilson, D. P., 1970. Additional observation on larval growth and settlement of Sabellaria ah’eolata, J. mar. biol. Ass. U.K. 50: 1–31.

    Article  Google Scholar 

  • Wilson, D. P., 1974. Sabellaria colonies at Duckpool, North Cornwall. 1971–1972, with a note for May 1973. J. mar. biol. Ass. U.K. 54: 393–436.

    Google Scholar 

  • Wisely. B.. 1958. The development and settling of a serpulid worm, Hvdroides norvegica Gunnerus (Polychaeta). Aust. J. mar. freshw. Res. 9: 351–361.

    Article  Google Scholar 

  • Wisely, B., 1960. Observations on the settling behaviour of larvae of the tubeworm Spirorbis borealis Daudin (Polychaeta). Aust. J. mar. freshw. Res. 10: 55–72.

    Article  Google Scholar 

  • Woodin, S. A., 1976. Adult-larval interactions in dense infaunal assemblages: Patterns of abundance. J. mar. Res. 34: 25–41.

    Google Scholar 

  • Woodin, S. A., 1985. Effects of defecation by arenicolid polychaete adults on spionid polychaete juveniles in field experiments: Selective settlement or differential mortality. J. exp. mar. Biol. Ecol. 87: 119–132.

    Article  Google Scholar 

  • Woodin, S. A., 1986. Settlement of infauna: larval choice ? Bull. mar. Sci. 39: 401–407.

    Google Scholar 

  • Woodin, S. A., 1991. Recruitment of infauna: positive or negative cues ? Am. Zool. 31: 797–807.

    Google Scholar 

  • Woodin, S. A., S. M. Lindsay and D. S. Wethey, 1995. Process-specific recruitment cues in marine sedimentary systems. Biol. Bull. 189: 49–58.

    Article  Google Scholar 

  • Woodin, S. A., R. L. Marinelli and D. E. Lincoln, 1993. Allelochemical inhibition of recruitment in a sedimentary assemblage. J. them. Ecol. 19: 517–530.

    Article  CAS  Google Scholar 

  • Yool, A. J., S. M. Grau, M. G. Hadfield, R. A. Jensen, D. A. Markell and D. E. Morse, 1986. Excess potassium induces larval metamorphosis of four marine invertebrate species. Biol. Bull. 170: 255–266.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Qian, PY. (1999). Larval settlement of polychaetes. In: Dorresteijn, A.W.C., Westheide, W. (eds) Reproductive Strategies and Developmental Patterns in Annelids. Developments in Hydrobiology, vol 142. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2887-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2887-4_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5340-4

  • Online ISBN: 978-94-017-2887-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics