Skip to main content

Williams meets von Karman: Mode coupling and nonlinearity in the fracture of thin plates

  • Chapter
Recent Advances in Fracture Mechanics

Abstract

The stress field near the tip of a crack in a plate subjected to membrane and bending loads and undergoing large deflections, is investigated by performing an asymptotic analysis in the context of von Karman plate theory. It is demonstrated that the character of the near tip fields is identical to those of the linear plate theory. However, the determination of the crack tip stress intensity factors requires the solution of a large deflection, and hence nonlinear, problem due to the coupling of the membrane and bending modes. This effect is illustrated through the solution of three fracture problems involving plates of simple geometries loaded by pressure, tension and shearing. In two of these problems, the energy release rate is obtained exactly. Nonlinear finite element computations are performed to obtain the stress intensity factors and energy release rate associated with tension, bending and shearing. These results are compared to the theoretical results for energy release rate and stress intensity factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alwar, R.S. and Thiagarajan, S. (1989). Combined effect of shear and large deformation on stress intensity factors. International Journal of Numerical Methods in Engineering 28, 1951–1964.

    Article  ADS  MATH  Google Scholar 

  • Boduroglu, H. and Erdogan, F. (1983). Internal and edge cracks in a plate of finite width under bending. Journal of Applied Mechanics 50, 621–629.

    Article  ADS  MATH  Google Scholar 

  • Conway, H.D. (1946). Large deflection of circular and square plates. Philosophical Magazine Series 7 37, 757–767.

    Google Scholar 

  • Conway, H.D. (1957). Notes on Way’s large deflection solution for the uniformly loaded and clamped circular plate. Journal of Applied Mechanics 24, 151–152.

    MathSciNet  MATH  Google Scholar 

  • Delale, F. and Erdogan, F. (1979). The effect of transverse shear in a crack plate under skew-symmetric loading. Journal of Applied Mechanics 46, 618–624.

    Article  ADS  MATH  Google Scholar 

  • Foeppel, A. and Foeppl, L. (1924). Drang und Zwang 1, 345.

    Google Scholar 

  • Fung, Y.C. (1965). Fundations of Solid Mechanics, Prentice-Hall, Englewood Cliffs, New Jersey. Hencky, H. (1915). Z. Math. Physik 63, 311.

    Google Scholar 

  • Hui, C.Y. and Zehnder, A.T. (1993). A theory for the fracture of thin plates subjected to bending and twisting moments. International Journal of Fracture 61, 211–229.

    Article  ADS  Google Scholar 

  • Karman, von (1910). T. Festigkeitsprobleme in Maschinenbau. Encyklopadie der mathematischen Wissenschaften IV, Chap. 27.

    Google Scholar 

  • Kirchhoff, G. (1850). Uber das gleichgewicht and die bewegung einer elastichen scheibe. J. fuer Reine und Angewandte Mathematik 40, 51–88.

    Article  MATH  Google Scholar 

  • Knowles, J.K. and Wang, N.W. (1960). On the bending of an elastic plate containing a crack. Journal of Mathematics and Physics 39, 223–236.

    MathSciNet  Google Scholar 

  • Murakami, Y. (1987). Stress Intensity Factor Handbook 2, Pergamon Press, Elmford, New York.

    Google Scholar 

  • Murthy, M.V.V., Raju, K.N. and Viswanath, S. (1981). On the bending stress distribution at the tip of a stationary crack from Reissner’s theory. International Journal of Fracture 17, 537–552.

    Article  Google Scholar 

  • Reissner, E. (1947). On the bending of elastic plates. Quarterly of Applied Mathematics 5, 55–68.

    MathSciNet  MATH  Google Scholar 

  • Sih, G.C., Paris, P.C. and Erdogan, F. (1962). Crack tip stress intensity factors for plane extension and plate bending problems. Journal of Applied Mechanics 29, 306–312

    Article  ADS  Google Scholar 

  • Simmonds, J.G. and Duva, J. (1981). Thickness effects are minor in the energy release rate integral for bent plates containing elliptical holes or cracks. Journal of Applied Mechanics 48, 320–326.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Viz, M.J. (1996). Fatigue Fracture of 2024-T3 Aluminum Plates under In-plane Symmetric and out of Plane Anti-symmetric Mixed-mode Deformations,Ph.D thesis, Cornell University.

    Google Scholar 

  • Viz, M.J. and Zehnder, A.T. (1994). Fatigue Crack Growth in 2024-T3 Aluminum under Tensile and Transverse Shear Stresses,in FAA/NASA International symposium on advanced structural integrity methods for airframe durability and damage tolerance, NASA CP-3274, C. Harris, eds, 891–910.

    Google Scholar 

  • Viz, M.J., Potyondy, D.O., Zehnder, A.T., Rankin, C.C. and Riks, E. (1995a). Computation of membrane and bending stress intensity factors for thin cracked plates. International Journal of Fracture 72, 21–38.

    Google Scholar 

  • Viz, M.J., Zehnder, A.T. and Bamford, J.D. (1995b). Fatigue fracture of thin plates under tensile and tranverse shear stresses, in Fracture Mechanics 26, ASTM STP 1256. Reuter et al, eds, American Society for Testing and Materials, Philadelphia, PA, 631–651.

    Google Scholar 

  • Wang, N.M. (1970). Twisting of an elastic plate containing a crack. International Journal of Fracture Mechanics 6, 367–378.

    Google Scholar 

  • Way, S. (1934). Bending of circular plates with large deflections. Transactions ASME 56, 627.

    Google Scholar 

  • Williams, M.L. (1961). The bending stress distribution at the base of a stationary crack. Journal of Applied Mechanics 28, 78–82.

    Article  ADS  MATH  Google Scholar 

  • Young, M.J. and Sun, C.T. (1993a). Crack plates subjected to out of plane tearing loads. International Journal of Fracture 60, 1–18.

    Article  ADS  Google Scholar 

  • Young, M.J. and Sun, C.T. (1993b). On the strain energy release rate for crack plate subjected to out of plane bending moment. International Journal of Fracture 60, 227–247.

    Article  ADS  Google Scholar 

  • Zehnder, A.T. and Hui, C.Y. (1994). Stress Intensity Factors for Plate Bending and Shearing problems. Journal of Applied Mechanics 61, 719–722.

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hui, CY., Zehnder, A.T., Potdar, Y.K. (1998). Williams meets von Karman: Mode coupling and nonlinearity in the fracture of thin plates. In: Knauss, W.G., Schapery, R.A. (eds) Recent Advances in Fracture Mechanics. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2854-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2854-6_21

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5266-7

  • Online ISBN: 978-94-017-2854-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics