Skip to main content

Microfibrillar Reinforced Composites — A New Concept for the Preparation of Stronger, Biodegradable Implants

  • Chapter
  • 423 Accesses

Abstract

In contrast to the classical composites, microfibrillar reinforced composites are not prepared via melt blending of the matrix and the reinforcing material. In fact, the reinforcing elements of this composite, the microfibrils, are created during processing. This advantage allows the manufacturing of a full biodegradable composite material with improved mechanical properties. Basing on a blend of two common biodegradable polymers, polylactide and polyglycolide, this new composite shows promising values under ambient conditions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fakirov, S., Evstatiev, M. and Friedrich, K. (2000). From Polymer Blends to Microfibrillar Reinforced Composites. in: Polymer Blends, Vol. 2 Performance,. Paul, D. R. and Bucknall, C. B., (eds.), Wiley J and Sons, Inc., New York, Chapter 33, 2000, 455.

    Google Scholar 

  2. Evstatiev, M., Schultz, J., M., Fakirov, S. and Friedrich, K. (2001). In Situ Fibrillar Reinforced PET/PA6/PA66 Blends. Polym. Eng. Sci., Vol. 41, 192.

    Google Scholar 

  3. Evstatiev, M., Fakirov, S., Bechtold, G., Friedrich, K (2000). Structure-Property Relationships of Injection-and Compression Molded Microfibrillar Reinforced PET/PA6 Composites. Adv. Polym. Technonology. Vol. 19, 249.

    Google Scholar 

  4. Evstatiev, M., Fakirov, S., Krasteva, B., Friedrich, K., Covas, J., Cunha, A. (2002). Recycling of PET as Polymer-Polymer Composites. Polym. Eng.Sci., Vol. 42, 826.

    Google Scholar 

  5. Friedrich, K., Ueda, E., Kamo, H., Evstatiev, M., Krasteva, B., Fakirov, S. (2002). Direct Electron Microscopic Observation of Transcrystalline Layers in Microfibrillar Reinforced Polymer-Polymer Composites. J. Mater. Sci. (in press)

    Google Scholar 

  6. Evstatiev, M., Fakirov, S., Friedrich, K. (2000). Microfibrillar Reinforced Composites - Another Approach to Polymer Blends Processing. in: Structure Development during Polymer Processing, A.M.Cunha, S. Fakirov (Eds), Kluwer, Dordrecht, 344

    Google Scholar 

  7. Fakirov, S., Evstatiev, M., Friedrich, K. (2001). Nanostructured Polymer Composites from Polymer Blends - an Alternative Approach for Polymer Recycling. in: Proceeding of the International Conference on “Polymeric Blends ‘01”, Merserburg, Germany, March 2001, 17

    Google Scholar 

  8. Friedrich, K., Evstatiev, M., Fakirov, S., Evstatiev, O. (2002). Effect of Blend Composition on the Structure-Properties Relationship of Nanostructured Polymer Composites from Polycondensate/Polyolefine Blends. Int. J. Polym. Mater. (in press)

    Google Scholar 

  9. Wintermantel, E., Mayer, J., Ruffieux, K., Bruinink, A., Eckert, K.-L. (1999). Biomaterialien. Der Chirurg, Vol. 70, 847–857

    Google Scholar 

  10. Nordström, P., Pihlajamäki, H., Toivonen, T., Törmälä, P., Rokkanen, P. (1998). Tissue Response to Polyglycolide and Polylactide Pins in Cancellous Bone. Arch. Orthop. Trauma. Surg., Vol. 117, 197

    Google Scholar 

  11. Mainil-Varlet, P., Cordey, J., Gogolewski, S. (1997). Resorbable Polymeric Inserts as a Means of Enhancing Fixation of Fractures of Porotic Bones. Biomaterials, Vol. 18, 289

    Google Scholar 

  12. Pihlajamäki, H., Böstman, O., Hirvensalo, E., Törmälä, P., Rokannen, P. (1992). Absorbable Pins of Self-Reinforced Poly-L-lactic Acid for Fixation of Fractures and Osteotomies, The journal of bone and joint surgery, Vol. 6, 853–857

    Google Scholar 

  13. Hoffmann, J., Friedrich, K., Evstatiev, M., Fink, U. (2001). A Totally Bioresorbable Fibrillar Reinforced Composite System: Structure and Properties. Intern. J. Polymeric Mater., Vol. 50, 469

    Google Scholar 

  14. Hoffmann, J., Friedrich, K., Fink, U. (2002). Rapid Manufacturing of Bone Nails with Improved Mechanical Properties. in: Proceedings of the IV World Congress Biomechanics, Calgary, Canada, August 4–9, 2002, Index H

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Friedrich, K., Hoffmann, J., Evstatiev, M., Fakirov, S. (2003). Microfibrillar Reinforced Composites — A New Concept for the Preparation of Stronger, Biodegradable Implants. In: Gdoutos, E.E., Marioli-Riga, Z.P. (eds) Recent Advances in Composite Materials. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2852-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2852-2_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6294-9

  • Online ISBN: 978-94-017-2852-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics