Skip to main content

Part of the book series: Developments in Plant and Soil Sciences ((DPSS,volume 98))

Abstract

Malate occupies a central role in plant metabolism. Its importance in plant mineral nutrition is reflected by the role it plays in symbiotic nitrogen fixation, phosphorus acquisition, and aluminum tolerance. In nitrogen-fixing root nodules, malate is the primary substrate for bacteroid respiration, thus fueling nitrogenase. Malate also provides the carbon skeletons for assimilation of fixed nitrogen into amino acids. During phosphorus deficiency, malate is frequently secreted from roots to release unavailable forms of phosphorus. Malate is also involved with plant adaptation to aluminum toxicity. To define the genetic and biochemical regulation of malate formation in plant nutrition we have isolated and characterized genes involved in malate metabolism from nitrogen-fixing root nodules of alfalfa and those involved in organic acid excretion from phosphorus-deficient proteoid roots of white lupin. Moreover, we have overexpressed malate dehydrogenase in alfalfa in attempts to improve nutrient acquisition. This report is an overview of our efforts to understand and modify malate metabolism, particularly in the legumes alfalfa and white lupin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Appels M A and Haaker H 1988 Identification of cytoplasmic nodule-associated forms of malate dehydrogenase involved in the symbiosis between Rhizobium leguminosarum and Pisum sativum. Eur. J. Biochem. 171, 515–522.

    Article  PubMed  CAS  Google Scholar 

  • Bieleski R L 1973 Phosphate pools, phosphate transport, and phosphate availability. Annu. Rev. Plant Physiol. 24, 225–252.

    Article  CAS  Google Scholar 

  • de la Fuente J M, Ramirez-Rodrigues V, Cabreta-Ponce J L and Herrera-Estrella L 1997 Aluminum tolerance in transgenic plants by alteration of citrate synthesis. Science 276, 1566–1568.

    Article  PubMed  Google Scholar 

  • Delhaize E and Ryan P R 1995 Aluminum toxicity and tolerance in plants. Plant Physiol. 107, 315–321.

    PubMed  CAS  Google Scholar 

  • Delhaize E, Hebb D M and Ryan P P 2001 Expression of a Pseudomonas aeruginosa citrate synthase gene in tobacco is not associated with either enhanced citrate accumulation or efflux. Plant Physiol. 125, 2059–2067.

    Article  PubMed  CAS  Google Scholar 

  • Denison R F 1998 Decreased oxygen permeability: a universal

    Google Scholar 

  • stress response in legume root nodules. Bot. Acta 111, 191–192. Dinkelaker B, Hengeler C and Marschner H 1995 Distribution and

    Google Scholar 

  • function of proteoid roots. Bot. Acta 108, 183–200.

    Google Scholar 

  • Driscoll B T and Finan T M 1993 NAD+-dependent malic enzyme of Rhizobium meliloti is required for symbiotic nitrogen fixation. Mol. Microbiol. 7, 8655–8873.

    Article  Google Scholar 

  • Fedorova M, Tikhonovich I A and Vance C P 1999 Expression of C-assimilating enzymes in pea Pisum sativum root nodules. Plant, Cell Environ. 22, 1249–1262.

    Google Scholar 

  • Galvez S, Hirsch A M, Wycoff K L, Hunt S, Layzell D, Kondorosi A and Crespi M 2000 Oxygen regulation of a nodule-located carbonic anhydrase in alfalfa. Plant Physiol. 124, 1059–1068.

    Article  PubMed  CAS  Google Scholar 

  • Gardner W K, Barber D A and Parberry D G 1983 The acquisition of phosphorus by Lupinus albus L. HI. The probable mechanism by which phosphorus movement in the soil/root interface is enhanced. Plant Soil 70, 107–124.

    Google Scholar 

  • Gietl C 1992 Malate dehydrogenase isoenzymes: cellular locations and role in the flow of metabolites between cytoplasm and cell organelles. Biochem. Biophys. Acta 1100, 217–234.

    Google Scholar 

  • Gilbert G A, Vance C P and Allan D L 1998 Regulation of white lupin metabolism by phosphorus availability. In Phosphorus in Plant Biology: Regulatory Roles in Molecular, Cellular, Organismic and Ecosystem Processes. Eds. J P Lynch and J Deikman. pp. 157–167. American Society Plant Physiology, Rockville, MD.

    Google Scholar 

  • Johnson J F, Allan D L and Vance C P 1994 Phosphorus stress-induced proteoid roots show altered metabolism in Lupinus albus. Plant Physiol. 104, 657–665.

    PubMed  CAS  Google Scholar 

  • Johnson J F, Allan, D L, Vance C P and Weiblen g 1996a Root carbon dioxide fixation by phosphorus-deficient Lupinus albus. Contribution to organic acid exudation by proteoid roots. Plant Physiol. 112, 19–30.

    Google Scholar 

  • Johnson J M F, Vance C P and Allan D L 1996b Phosphorus deficiency in Lupinus albus. Altered lateral root development and enhanced expression of phosphoenolpyruvate carboxylase. Plant Physiol. 112, 31–41.

    Google Scholar 

  • Keerthisinghe G, Hocking P J, Ryan P R and Delhaize E 1998 Effect of phosphorus supply on the formation and function of proteoid roots of white lupin. Plant Cell Environ. 21, 467–478.

    Article  CAS  Google Scholar 

  • Kochian L V 1995 Cellular mechanisms of aluminum toxicity and resistance in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46, 237–260.

    Article  CAS  Google Scholar 

  • Koyama H, Takita E, Kawamura A, Hara T and Shibata D 1999 Over-expression of a mitochondrial citrate synthase gene improves the growth of carrot cells in Al-phosphate medium. Plant Cell Physiol. 40, 482–488.

    Article  PubMed  CAS  Google Scholar 

  • Lance C and Rustin P 1984 The central role of malate in plant metabolism. Physiol. Vég. 22, 625–641.

    CAS  Google Scholar 

  • Liu J, Uhde-Stone C, Li A, Vance C P and Allan D L 2001 A phosphate transporter with enhanced expression in proteoid roots. Plant Soil 237, 257–266.

    Article  CAS  Google Scholar 

  • Lopez-Bucio J, de La Vega O M, Guevara-Garcia A and Herrera-Estrella L 2000 Enhanced phosphorus uptake in transgenic plants that overproduce citrate. Nature Biotech. 18, 450–453.

    Article  CAS  Google Scholar 

  • Martinoia E and Rentsch D 1994 Malate compartmentation — responses to a complex metabolism. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45, 447–467.

    Article  CAS  Google Scholar 

  • Miller S S, Driscoll B T, Gregerson R G, Gantt J S and Vance C P 1998 Alfalfa malate dehydrogenase (MDH): molecular cloning and characterization of five different forms reveals a unique nodule-enhanced MDH. Plant J 15, 173–184.

    Article  PubMed  CAS  Google Scholar 

  • Neumann G, Massonneau A, Martinoia E and Römheld V 1999 Physiological adaptations to phosphorus deficiency during proteoid root development in white lupin. Planta 208, 373–382.

    Article  CAS  Google Scholar 

  • Neumann G, Massonneau A, Langlade N, Dinkelaker B, Hengeler C, Romheld V and Martinoia E 2000 Physiological aspects of cluster root function and development in phosphorus-deficient white lupin (Lupinus albus L.). Ann. Bot. 85, 909–919.

    Google Scholar 

  • Raghothama K G 1999 Phosphate acquisition. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 665–693.

    Article  PubMed  CAS  Google Scholar 

  • Ratajczak L, Ratajczak W and Koroniak D 1989 Detection of nodule specific forms of malate dehydrogenase from root nodules of Lupinus luteus. Biochem. Physiol. Pflanzen 184, 243–248.

    Google Scholar 

  • Ronson C W, Lyttleton P and Robertson J G 1981 C4-dicarboxylate transport mutants of Rhizobium trifbli form ineffective nodules on Trifolium repens. Proc. Natl. Acad. Sci. USA 78, 4284–4288.

    Google Scholar 

  • Rosendahl L, Vance C P and Pedersen W B 1990 Products of dark CO2 fixation in pea root nodules support bacteroid metabolism. Plant Physiol. 93, 12–19.

    Article  PubMed  CAS  Google Scholar 

  • Ryan P R, Delhaize E and Jones D L 2001 Function and mechanism of organic anion exudation from plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52, 527–560.

    Google Scholar 

  • Schactman D P, Reid R J and Ayling S M 1998 Phosphorus uptake by plants: from soil to cell. Plant Physiol. 116, 447–453.

    Article  Google Scholar 

  • Skene K R 2001 Cluster roots: model experimental tools for key biological problems. J Exp. Bot. 52, 479–485.

    Article  PubMed  CAS  Google Scholar 

  • Tesfaye M, Temple S J, Allan D L, Vance C P and Samac D A 2001 Over-expression of malate dehydrogenase in transgenic alfalfa enhances organic acid synthesis and confers tolerance to aluminum. Plant Physiol. 127, 1836–1844.

    Article  PubMed  CAS  Google Scholar 

  • Vance C P 2001 Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renewable resources. Plant Physiol. 127, 390–397.

    Article  PubMed  CAS  Google Scholar 

  • Vance C P and Heichel G H 1991 Carbon in N2 fixation: limitation or exquisite adaptation ? Annu. Rev. Plant Physiol. Plant Mol. Biol. 42, 373–392.

    Article  CAS  Google Scholar 

  • Watt M and Evans J R 1999 Proteoid roots: physiology and development. Plant Physiol. 121, 317–323.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. P. Vance .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Schulze, J. et al. (2002). Malate plays a central role in plant nutrition. In: Horst, W.J., et al. Progress in Plant Nutrition: Plenary Lectures of the XIV International Plant Nutrition Colloquium. Developments in Plant and Soil Sciences, vol 98. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2789-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2789-1_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6191-1

  • Online ISBN: 978-94-017-2789-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics