Skip to main content

Part of the book series: Series Entomologica ((SENT,volume 57))

  • 382 Accesses

Abstract

Two conflicting views confront ecologists and evolutionary biologists on the degree of symmetry in interactions between plants and phytophagous insects. The symmetrical view holds that insects and plants have strong effects on one another’s evolutionary and ecological dynamics. Thus, herbivores are regarded as a major influence on plant distribution and abundance in contemporary ecosystems, and coevolution is commonly invoked to explain adaptive radiation in plants and insects, host specialization in insects, as well as much of the morphological and chemical variety observed in plants. The asymmetrical view acknowledges that plants have major effects on insects, but claims that insects seldom impose significant effects on plants. Proponents of the asymmetric view tend to ignore or discount insect-plant interactions in communities and ecosystems altered by human impacts. If we recognize the scope and scale of human impacts, and ways in which these impacts change insect-plant interactions, then our views about symmetry or asymmetry in insect-plant interactions will change. To understand, predict, and manage insect herbivory we need to study it in all its manifestations. In particular, the study of interactions involving alien species is both an urgent priority for environmental management and potentially a source of ecological insights on the role of herbivores in plant population and community dynamics A complete theory of insect/host plant interactions must explain and predict interactions both within and beyond the native range. Such a theory might guide efforts to deal with environmental problems stemming from rapid rates of extinction and homogenization of the world’s biota.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Annecke, D. E, M. Karny, W. A. Burger, 1969. Improved biological control of the prickly-pear, Opuntia megacantha Salm. Dyck, in South Africa through the use of an insecticide. Phytophylactica 1: 9–13.

    Google Scholar 

  • Arnett, R. H., 2000. American Insects. A Handbook of the Insects of America north of Mexico, 2nd edition. CRC Press, Boca Raton, Florida, USA.

    Google Scholar 

  • Bach, C. E., 1994. Effects of a specialist herbivore (Altica subplicata) on Salix cordata and sand dune succession. Ecological Monographs 64: 423–445.

    Google Scholar 

  • Bach, C. E., 2001. Long-term effects of insect herbivory and sand accretion on plant succession on sand dunes. Ecology 82: 1401–1416.

    Google Scholar 

  • Beddington, J. R., C. A. Free, J. H. Lawton, 1978. Modelling biological control: on the characteristics of successful natural enemies. Nature 273: 573–579.

    Google Scholar 

  • Begon, M., J. L. Harper, C. R. Townsend, 1996. Ecology: individuals, populations, and communities. Sinauer Associates, Sunderland, Massachusetts.

    Google Scholar 

  • Berenbaum, M. R., 1990. Evolution of specialization in insectumbellifer associations. Annual Review of Entomology 35: 319–343.

    Google Scholar 

  • Berenbaum, M. R., A. R. Zangerl, 1992. Genetics of physiological and behavioral resistance to host furanocoumarins in the parsnip webworm. Evolution 46: 1373–1384.

    Google Scholar 

  • Bigger, D. S., M. A. Marvier, 1998. How different would a world without herbivory be?: A search for generality in Ecology. Integrative Biology 1: 60–66.

    Google Scholar 

  • Bird, M. I., J. A. Cali, 1998. A million-year record of fire in sub-Saharan Africa. Nature 394: 767–769.

    Google Scholar 

  • Bishop, J. G., 2002. Early primary succession on Mount St. Helens, impact of insect herbivores on colonizing lupines. Ecology 83: 191–202.

    Google Scholar 

  • Blossey, B., R. Nötzold, 1995. Evolution of increased competitive ability in invasive nonindigenous plants: a hypothesis. Journal of Ecology 83: 887–889.

    Google Scholar 

  • Brown, V. K., 1990. Insect herbivory and its effect on plant succession. In: J. J. Burdon, S. R. Leather (eds), Pests, Pathogens, and Plant Communities. Blackwell Scientific Publications, Oxford, England, pp. 275–288.

    Google Scholar 

  • Brown, V. K., A. C. Gange, 1989. Differential effects of above-and below-ground insect herbivory during early plant succession. Oikos 54: 67–76.

    Google Scholar 

  • Brown, V. K., A. C. Gange, 1990. Root herbivory depresses plant species richness. Functional Ecology 3: 667–671.

    Google Scholar 

  • Brown, V. K., A. C. Gange, 1992. Secondary plant succession: how is it modified by insect herbivory? Vegetatio 101: 3–13.

    Google Scholar 

  • Brown, V. K., S. D. Hendrix, H. Dingle, 1987a. Plants and insects in early old-field succession: comparison of an English site and an American site. Biological Journal of the Linnean Society 31: 59–74.

    Google Scholar 

  • Brown, V. K., M. Leijn, C. S. A. Stinson, 1987b. The experimental manipulation of insect herbivore load by the use of insecticide (malathion): The effect of application on plant growth. Oecologia 72: 377–381.

    Google Scholar 

  • Brown, V. K., M. Jepsen, C. W. D. Gibson, 1988. Insect herbivory: effects on early old field succession demonstrated by chemical exclusion methods. Oikos 52: 293–302.

    Google Scholar 

  • Callaway, R. M., E. T. Aschehoug, 2000. Invasive plants versus their new and old neighbors: a mechanism for exotic invasion. Science 290: 521–523.

    PubMed  CAS  Google Scholar 

  • Callaway, R. M., T. H. DeLuca, W. M. Belliveau, 1999. Biological-control herbivores may increase competitive ability of the noxious weed Centaurea maculosa. Ecology 80: 1196–1201.

    Google Scholar 

  • Carpenter, S. R., N. F. Carcao, D. L. Correll, R. W. Howarth, A. N. Sharpley, F. H. Smith, 1998. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications 8: 559–568.

    Google Scholar 

  • Carroll, S. P., H. Dingle, 1996. The biology of post-invasion events. Biological Conservation 78: 207–214.

    Google Scholar 

  • Carson, W. P., R. B. Root, 1999. Top-down effect of insect herbivores during early succession: influence on biomass and plant dominance. Oecologia 121: 260–272.

    Google Scholar 

  • Carson, W. P., R. B. Root, 2000. Herbivory and plant species coexistence: community regulation by an outbreaking phytophagous insect. Ecological Monographs 70: 73–99.

    Google Scholar 

  • Caughley, G., J. H. Lawton, 1981. Plant-herbivore systems. In: R. M. May (ed), Theoretical Ecology: Principles and Applications. Blackwell Scientific Publications, Oxford, England, pp. 132–166.

    Google Scholar 

  • Clark, J. S., 1990. Fire and climate change during the last 750 years in northwestern Minnesota. Ecological Monographs 60: 135–159.

    Google Scholar 

  • Cornell, H. V., B. A. Hawkins, 1993. Accumulation of native parasitoid species on introduced herbivores: a comparison of hosts as natives and hosts as invaders. American Naturalist 141: 847–865.

    PubMed  CAS  Google Scholar 

  • Crawley, M. J., 1983. Herbivory: The Dynamics of Animal-Plant Interactions. University of California Press, Berkeley, California, USA.

    Google Scholar 

  • Crawley, M. J., 1986. The population biology of invaders. Philosophical Transactions of the Royal Society of London B Biological Sciences 314: 711–731.

    Google Scholar 

  • Crawley, M. J., 1988. Herbivores and plant population dynamics. In: A. J. Davy, M. J. Hutchings, A. R. Watkinson (eds), Symposium British Ecological Society. Blackwell, Oxford, England, pp. 367–392.

    Google Scholar 

  • Crawley, M. J., 1989a. Insect herbivores and plant population dynamics. Annual Review of Entomology 34: 531–564.

    Google Scholar 

  • Crawley, M. J., 1989b. The relative importance of vertebrate and invertebrate herbivores in plant population dynamics. In: E. A. Bemays (ed), Insect-Plant Interactions. CRC Press, Boca Raton, Florida, USA, pp. 45–71.

    Google Scholar 

  • Crawley, M. J., 1989c. The successes and failures of weed bio-control using insects. Biocontrol News and Information 10: 213–223.

    Google Scholar 

  • Crawley, M. J., 1990. The population dynamics of plants. Philosophical Transactions of the Royal Society of London B Biological Sciences 330: 125–140.

    Google Scholar 

  • Crawley, M. J., 1992. Seed predators and plant population dynamics. In: M. Fenner (ed), Seeds: the Ecology of Regeneration in Plant Communities. C.A.B. International, London, UK, pp. 157–191.

    Google Scholar 

  • Crawley, M. J., 1997. Plant-Herbivore Dynamics In• Plant Ecology. Blackwell Scientific, Cambridge, Massachusetts, USA, pp. 401474.

    Google Scholar 

  • Daehler, C. C., D. R. Strong, 1997. Reduced herbivore resistance in introduced smooth cordgrass (Spartina alterniflora) after a century of herbivore-free growth. Oecologia 110: 99–108.

    Google Scholar 

  • Denno, R. F., M. S. McClure, J. R. Ott, 1995. Interspecific interactions in phytophagous insects: Competition reexamined and resurrected. Annual Review of Entomology 40: 297–331.

    CAS  Google Scholar 

  • Ehler, L. E., P. C. Endicott, M. B. Hertlein, B. Alvarado-Rodriquez, 1984. Medfly eradication in California: impact of malathion-bait sprays on an endemic gall midge and its parasitoids. Entomologia Experimentalis et Applicata 36: 201–208.

    Google Scholar 

  • Fagan, W. F., J. G. Bishop, 2000. Trophic interactions during primary succession: herbivores slow a plant reinvasion at Mount St. Helens. American Naturalist 155: 238–251.

    Google Scholar 

  • Follett, P. A., J. J. Duan (eds), 2000. Nontarget effects ofbiological control. Kluwer, Boston, Massachusetts, USA. Gallagher, R., B. Carpenter, 1997. Human-dominated ecosystems.Science 277: 485.

    Google Scholar 

  • Goeden, R. D., S. M. Louda, 1976. Biotic interference with insects imported for weed control. Annual Review of Entomology 21: 325–342.

    Google Scholar 

  • Goodell, K., I. M. Parker, G. S. Gilbert, 2000. Biological impacts of species invasions: implications for policymakers. In: N. R. C. Board on Agriculture and Natural Resources (ed), Incorporating science, economics, and sociology in developing sanitary and phytosanitary standards in international trade. National Academy Press, Washington, D.C., pp. 87–117.

    Google Scholar 

  • Grevstad, F. S., 1999a. Experimental invasions using biological control introductions: the influence of release size on the chance of population establishment. Biological Invasions 1: 313–323.

    Google Scholar 

  • Grevstad, F. S., 1999b. Factors influencing the chance of population establishment: implications for release strategies in biocontrol. Ecological Applications 9: 1439–1447.

    Google Scholar 

  • Gruber, E., A. Whytemare, 1997. The return of the native? Sidalcea hirtipes in coastal Oregon. In: T. N. Kaye, A. Liston, R. M. Love, D. L. Luoma, R. J. Meinke, M. V. Wilson (eds), Conservation and Management of Native Plants and Fungi. Native Plant Society of Oregon, Corvallis, OR, USA, pp. 121–124.

    Google Scholar 

  • Gurevitch, J., L. L. Morrow, A. Wallace, J. S. Walsh, 1992. A meta-analysis of competition in field experiments. American Naturalist 140: 539–572.

    Google Scholar 

  • Hairston, N. G., F. E. Smith, L. B. Slobodkin, 1960. Community structure, population control, and competition. American Naturalist 94: 421–425.

    Google Scholar 

  • Harper, J. L., 1977. Population Biology of Plants. Academic Press, New York, NY, USA.

    Google Scholar 

  • Hendrix, S. D., V. K. Brown, H. Dingle, 1988. Arthropod guild structure during early old field succession in a new and old world site. Journal of Animal Ecology 57: 1053–1065.

    Google Scholar 

  • Henneman, M. L., J. Memmott, 2001. Infiltration of a Hawaiian community by introduced biological control agents. Science 293: 1314–1316.

    PubMed  CAS  Google Scholar 

  • Heywood, V. H., 1989. Patterns, extents, and modes of invasions by terrestrial plants. In: J. A. Drake, H. A. Mooney, F. di Castri, R. H. Groves, F. J. Kreuger, M. Rejmanek, M. Williamson (eds). Biological Invasions: a Global Perspective. John Wiley, Sons, New York, New York, USA, pp. 31–60.

    Google Scholar 

  • Hoffmann, J.H., 1990. Interactions between three weevil species in the biocontrol of Sesbania punicea (Fabaceae): the role of simulation models in evaluation. Agriculture, Ecosystems and Environment 32: 77–87.

    Google Scholar 

  • Hoffmann, J. H., V. C. Moran, 1998. The population dynamics of an introduced tree, Sesbania punicea, in South Africa, in response to long-term damage caused by different combinations of three species of biological control agents. Oecologia 114: 343–348.

    Google Scholar 

  • Holt, R. D., M. E. Hochberg, 1997. When is biological controlevolutionarily stable (or is it)? Ecology 78: 1673–1683. Howarth, F. G., W. P. Mull, 1992. Hawaiian Insects and their Kin.University of Hawaii Press, Honolulu, Hawaii.

    Google Scholar 

  • Huey, R. G., G. W. Gilchrist, M. L. Carlson, D. Berrigan, L. Serra, 2000. Rapid evolution of a geographic cline in size in an introduced fly. Science 287: 308–309.

    PubMed  CAS  Google Scholar 

  • Huffaker, C. B., 1952. The return of native perennial bunchgrass following the removal of Klamath Weed (Hypericum perforatum L.) by imported beetles. Ecology 32: 443–458.

    Google Scholar 

  • Huffaker, C. B., C. E. Kennett, 1959. A ten-year study of vegetational changes associated with biological control of Klamath Weed. Journal of Range Management 12: 69–82.

    Google Scholar 

  • Hughes, L., 2000. Biological consequences of global warming: is the signal already apparent? Trends in Ecology and Evolution 15: 56–61.

    PubMed  Google Scholar 

  • Jayanth, K. P., P. N. Ganga Visalakshy, 1996. Succession vegetation after suppression of parthenium weed by Zygogramma bicolorata in Bangalore, India. Biological Agriculture and Horticulture 12: 303–309.

    Google Scholar 

  • Jermy, T., 1976. Insect-host-plant relationships-coevolution or se-quential evolution ? Symp. Biologica Hungarica 16: 109–113. Jermy, T., 1984. Evolution of insect/host plant relationships. Amer-ican Naturalist 124: 609–630.

    Google Scholar 

  • Jermy, T., 1993. Evolution of insect-plant relationships–a devil’s advocate approach. Entomologia Experimentalis et Applicata 66: 3–12.

    Google Scholar 

  • Julien, M. H., 1989. Biological control of weeds worldwide: trends, rates of success and the future. Biocontrol News and Information 10: 299–306.

    Google Scholar 

  • Julien, M. H., M. W. Griffiths (eds), 1998. Biological Control of Weeds. A world Catalogue of Agents and their Target Weeds, 4th edition. CABI Publishing, CAB International, Wallingford, U.K.

    Google Scholar 

  • Keane, R. M., M. J. Crawley, 2002. Exotic plant invasions and the enemy release hypothesis. Trends in Ecology and Evolution 17: 164–170.

    Google Scholar 

  • Lawton, J. H., S. McNeill, 1979. Between the devil and the deep blue sea: on the problem of being a herbivore. In: R. M. Anderson, B. D. Turner, L. R. Taylor (eds), Population Dynamics. Blackwell Scientific Publications, Oxford, U.K., pp. 223–244.

    Google Scholar 

  • Lonsdale, W. M., 1999. Global patterns of plant invasion and the concept of invasibility. Ecology 80: 1522–1536.

    Google Scholar 

  • Louda, S. M., 1989. Predation in the dynamics of seed regeneration. In: M. A. Leck, V. T. Parker, R. L. Simpson (eds), Ecology of Soil Seed Banks. Academic Press, New York, USA, pp. 25–51.

    Google Scholar 

  • Luken, J. 0., 1990. Directing Ecological Succession. Chapman and Hall, New York, NY, USA.

    Google Scholar 

  • Maron, J. L., R. L. Jefferies, 1999. Bush lupine mortality, altered resource availability and alternative vegetation states. Ecology 80: 443–454.

    Google Scholar 

  • Maron, J. L., M. Vilà, 2001. When do herbivores affect plant invasion? Evidence for the natural enemies and biotic resistance hypotheses. Oikos 95: 361–373.

    Google Scholar 

  • Marquis, R. J., 1992. Selective impact of herbivores. In: R. S. Fritz, E. L. Simms (eds), Plant Resistance to Herbivores and Pathogens: Ecology, Evolution, and Genetics. University of Chicago Press, Chicago, IL, USA, pp. 301–325.

    Google Scholar 

  • Mattson, W. J., 1980. Herbivory in relation to plant nitrogen content. Annual Review of Ecology and Systematics 11: 119–162.

    Google Scholar 

  • Mauricio, R., M. D. Rausher, 1997. Experimental manipulation of putative selective agents provides evidence for the role of natural enemies in the evolution of plant defense. Evolution 51: 1435 1444.

    Google Scholar 

  • McClay, A.S., 1995. Beyond `before-and-after’: experimental design and evaluation in classical weed biocontrol. In: E. S. Delfosse, R. R. Scott (eds), Proceedings of the VIII International Symposium on Biological Control of Weeds. DSIR/CSIRO, Melbourne, pp. 213–219.

    Google Scholar 

  • McEvoy, P. B., 1996. Evaluation and economics: synthesis of session 7. In: V. C. Moran, J. H. Hoffman (eds), Proceedings of the IX International Symposium on Biological Control of Weeds. University of Cape Town, South Africa, pp. 511–515.

    Google Scholar 

  • McEvoy, P. B., E. M. Coombs, 1999. Biological control of plant invaders: Regional patterns, field experiments, and structured population models. Ecological Applications 9: 387–401.

    Google Scholar 

  • McEvoy, P. B., E. M. Coombs, 2000. Why things bite back: unintended consequences of biological weed control. In: P. A. Follett, J. J. Duan (eds), Nontarget effects of biological control. Kluwer Academic Publishers, Boston, Massachusetts, USA, pp. 167–194.

    Google Scholar 

  • McEvoy, P. B., C. Cox, E. Coombs, 1991. Successful biological control of ragwort, Senecio jacobaea, by introduced insects in Oregon. Ecological Applications 1: 430–442.

    Google Scholar 

  • McFadyen, R. E. C., 1998. Biological control of weeds. Annual Review of Entomology 43: 369–393.

    PubMed  CAS  Google Scholar 

  • McNeil, S., T. R. E. Southwood, 1978. The role of nitrogen in the development of insect/plant relationships. In: J. B. Harborne (ed), Biochemical Aspects of Plant and Animal Coevolution. Academic Press, London, U.K, pp. 77–98.

    Google Scholar 

  • Memmott, J., S. V. Fowler, H. M. Hannan, L. M. Hayes, 1996. How best to release a biological control agent. In: V. C. Moran, J. H. Hoffman (eds), Proceedings of the IX International Symposium on Biological Control of Weeds. University of Cape Town, South Africa, pp. 291–296.

    Google Scholar 

  • Memmott, J., S. V. Fowler, R. L. Hill, 1998. The effect of release size on the probability of establishment of biological control agents: Gorse thrips (Sericothrips staphylinus) released against gorse (Ulex europaeus) in New Zealand. Biocontrol, Science and Technology 8: 103–105.

    Google Scholar 

  • Mitsch, W. J., J. G. Gosselink, 2000. Wetlands, Third edition. John Wiley, New York, New York, USA.

    Google Scholar 

  • Mooney, H. A., E. D. Cleland, 2001. The evolutionary impact of invasive species. Proceedings of the National Academy of Sciences of the United States of America 98: 5389–5392.

    Google Scholar 

  • Moran, V. C., 1985. The Silwood International Project on the biological control of weeds. In: E. S. Delfosse (ed), Proceedings of the VI International Symposium on Biological Control of Weeds. Agriculture Canada, Ottawa, Vancouver, Canada, pp. 65–68.

    Google Scholar 

  • Müller, H., G. Nuessly, R. Goeden, 1990. Natural enemies and host-plant asynchrony contributing to the failure of the introduced moth, Coleophora parthenica Meyrick (Lepidoptera: Coleophoridae), to control Russian thistle. Agriculture, Ecosystems and Environment 32: 133–142.

    Google Scholar 

  • Myers, J. H., 1985. How many insect species are necessary for successful biocontrol of weeds? In: E. S. Delfosse (ed), Proceedings of the Sixth International Symposium on Biological Control of Weeds. Agriculture Canada, Ottawa pp. 77–82.

    Google Scholar 

  • Niemelä, P., W. J. Mattson, 1996. Invasion of North American Forests by European Phytophagous Insects. BioScience 46: 741753.

    Google Scholar 

  • OTA - U.S. Congress Office of Technology Assessment, 1993. Harmful Non-Indigenous Species in the United States, OTA-F565. U.S. Government Printing Office, Washington, D.C.

    Google Scholar 

  • Parker, I. M., 2000. Invasion dynamics of Cytisus scoparius: A matrix model approach. Ecological Applications 10: 726–743.

    Google Scholar 

  • Parker, I. M., D. Simberloff, W. M. Lonsdale, K. Goodell, M. Won-ham, R. M. Kareiva, M. H. Williamson, B. V. Holle, P. B. Moyle, J. E. Byers, L. Goldwasser, 1999. Impact: toward a framework for understanding the ecological effects of invaders. Biological Invasions 1: 3–19.

    Google Scholar 

  • Paynter, Q., S. V. Fowler, J. Memmott, A. W. Sheppard, 1998. Factors affecting the establishment of Cytisus scoparius in southern France: implications for managing both native and exotic populations. Journal of Applied Ecology 35: 582–595.

    Google Scholar 

  • Pimm, S. L., 2001. The world according to Pimm: a scientist audits the earth. McGraw-Hill, New York, NY, USA.

    Google Scholar 

  • Rees, M., Q. Paynter, 1997. Biological control of Scotch broom: modeling the determinants of abundance and the potential impact of introduced insect herbivores. Journal of Applied Ecology 34: 1203–1221.

    Google Scholar 

  • Rejmânek, M., 2000. A must for North American biogeographers. Diversity and Distributions 6: 208–211.

    Google Scholar 

  • Roderick, G. K., F. G. Howarth, 1999. Invasion genetics: Natural colonizations, non-indigenous species, and classical biological control. In: E. Yano, K. Matsuo, M. Shiyomi, D. A. Andow (eds), Biological Invasions of Ecosystem by Pests and Beneficial Organisms. National Institute of Agro-Environmental Sciences, Tsukuba, Japan, pp. 98–108.

    Google Scholar 

  • Room, P. M., 1990. Ecology of a simple plant-herbivore system: biological control of Salvinia. Trends in Ecology and Evolution 5: 74–79.

    PubMed  CAS  Google Scholar 

  • Root, R. B., N. Cappuccino, 1992. Patterns in population change and the organization of the insect community associated with goldenrod. Ecological Monographs 62: 393–420.

    Google Scholar 

  • Sailer, R. I., 1983. History of insect introductions. In: C. L. Wilson, C. L. Graham (eds), Exotic Plant Pests and North American Agriculture. Academic Press, New York, NY, USA, pp. 15–38.

    Google Scholar 

  • Schaffner, U., 2001. Host range testing of insects for biological weed control: How can it be better interpreted? Bioscience 51: 951–959.

    Google Scholar 

  • Schlesinger, W. H., 1997. Biogeochemistry: An Analysis of global Change. Academic Press, San Diego, California, USA.

    Google Scholar 

  • Schmitz, O. J., P. A. Hambäck, A. P. Beckerman, 2000. Trophic cascades in terrestrial systems: a review of the effects of carnivore removals on plants. American Naturalist 155: 141–153.

    PubMed  Google Scholar 

  • Secord, D., P. Kareiva, 1996. Perils and pitfalls in the host specificity paradigm. Bioscience 46: 448–453.

    Google Scholar 

  • Shea, K., P. L. Chesson, 2002. Community theory as a framework for biological invasions. Trends in Ecology and Evolution 17: 170–174.

    Google Scholar 

  • Shea, K., D. Kelly, 1998. Estimating biocontrol agent impact with matrix models: Carduus nutans in New Zealand. Ecological Applications 8: 824–832.

    Google Scholar 

  • Sheppard, A. W., 1996. The interaction between natural enemies and interspecific plant competition in the control of invasive pasture weeds. In: V. C. Moran, J. H. Hoffman (eds), Proceedings of the IX International Symposium on Biological Control of Weeds. University of Cape Town, South Africa, pp. 47–53.

    Google Scholar 

  • Shigesada, N., K. Kawasaki, 1997. Biological Invasions: Theory and Practice. Oxford University Press, New York, New York, USA.

    Google Scholar 

  • Singer, M. C., C. D. Thomas, C. Parmesan, 1993. Rapid human-induced evolution of insect-host associations. Nature 366: 68 1683.

    Google Scholar 

  • Strong, D. R., J. H. Lawton, R. Southwood, 1984. Insects on Plants: Community Patterns and Mechanisms. Harvard University Press, Cambridge, Massachusetts.

    Google Scholar 

  • Tilman, D., C. Lehman, 2001. Human-caused environmental change: impacts on plant diversity and evolution. Proceedings of the National Academy of Sciences of the United States of America 10: 5433–5440.

    Google Scholar 

  • Tilman, D., P. B. Reich, H. Phillips, M. Menton, A. Patell, E. Vos, D. Peterson, J. Knops, 2000. Fire suppression and ecosystem carbon storage. Ecology 81: 2680–2685.

    Google Scholar 

  • Turnbull, L. A., M. J. Crawley, M. Reese, 2000. Are plant populations seed-limited? A review of seed sowing experiments. Oikos 88: 225–238.

    Google Scholar 

  • van der Putten, W. H., C. van Dijk, B. A. M. Peters, 1993. Plant-specific soil-borne diseases contribute to succession in foredune vegetation. Nature 362: 53–56.

    Google Scholar 

  • Vitousek, P. M., 1994. Beyond global warming: ecology and global change. Ecology 75: 1861–1876.

    Google Scholar 

  • Vitousek, P. M., P. R. Ehrlich, A. H. Ehrlich, P. A. Matson, 1986. Human appropriation of the products of photosynthesis. BioScience 36: 368–373.

    Google Scholar 

  • Vitousek, P. M., J. D. Aber, R. W. Howarth, G. E. Likens, P. A. Matson, D. W. Schindler, W. H. Schlesinger, D. Tilman, 1997. Human alteration of the global nitrogen cycle: Source and consequences. Ecological Applications 7: 737–750.

    Google Scholar 

  • Waage, J. K., 2001. Indirect ecological effects in biological control: the challenge and the opportunity. In: E. Wajnberg, J. K. Scott, P. C. Quimby (eds), Evaluating Indirect Ecological Effects of Biological Control. CABI Publishing, Wallingford, UK, pp. 112.

    Google Scholar 

  • Wagner, W. L., D. R. Herbst, S. H. Sohmer, 1990. Manual of the flowering Plants of Hawaii Volume 1. University of Hawaii Press, Bishop Museum Press, Honlulu, Hawaii, USA. 988 Pages.

    Google Scholar 

  • Weber, E. F., 1997. The alien flora of Europe: a taxonomic and biogeographic review. Journal of Vegetation Science 8: 565–572.

    Google Scholar 

  • White, T. C. R., 1993. The inadequate enviro+nment: Nitrogen and the Abundance of Animals. Springer-Verlag, New York, NY, USA.

    Google Scholar 

  • Willis, A. J., M. B. Thomas, J. H. Lawton, 1999. Is the increased vigour of invasive weeds explained by a trade-off between growth and herbivore resistance? Oecologia 120: 632–640.

    Google Scholar 

  • Willis, A. J., J. Memmott, R. I. Forrester, 2000. Is there evidence for the post-invasion evolution of increased size among invasive plant species? Ecology Letters 3: 275–283.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

McEvoy, P.B. (2002). Insect-plant interactions on a planet of weeds. In: Nielsen, J.K., Kjær, C., Schoonhoven, L.M. (eds) Proceedings of the 11th International Symposium on Insect-Plant Relationships. Series Entomologica, vol 57. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2776-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2776-1_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6129-4

  • Online ISBN: 978-94-017-2776-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics