Skip to main content

Is Quantum Mechanics a Probabilistic Theory?

  • Chapter

Part of the book series: Boston Studies in the Philosophy of Science ((BSPS,volume 194))

Abstract

The quantum mechanical formalism which was discovered by Heisenberg [1] and Schrödinger [2] in 1925 was first interpreted by Born [3] in a statistical sense. The formal expressions p(φ, a i ) = ׀(φ, φ ai2, i ∊ N were interpreted as the probabilities that a quantum system S with preparation φ possesses the value a i which belongs to the state φ αi. This original Bom interpretation which was formulated for scattering processes was, however, not tenable in the general case. The probabilities must not be related to the system S in state φ since in the preparation φ the value α i of an observable A is in general not subjectively unknown but objectively undecided. Instead one has to interpret the formal terms p(φ, α i ) as the probabilities to find the value at after the measurement of the observable A of the system S with preparation φ. In this improved version the statistical or “Born interpretation” is used in the present day literature.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Heisenberg, W. (1925), “Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen”, Z Phys. 33, 879–893.

    Google Scholar 

  2. Schrödinger, E. (1926), “Quantisierung als Eigenwertproblem’’, Annal. Phys 79, 361–376.

    Article  MATH  Google Scholar 

  3. Born, M. (1926), “Zur Quantenmechanik der Sto/Wgänge”, Z. Phys 37, 863–867.

    Article  MATH  Google Scholar 

  4. Heisenberg, W. (1959), “Die Plancksche Entdeckung und die physikalischen Probleme der Atomphysik’’, Universitas 14, 135–148.

    Google Scholar 

  5. Busch, P., P. Lahti and P. Mittelstaedt (1991), The Quantum Theory of Measurement, Springer, Heidelberg (2nd ed., 1996 ).

    Google Scholar 

  6. Mittelstaedt, P. (1993), “The Measuring Process and the Interpretation of Quantum Mechanics”, Int. J. Theor. Phys 32, 1763–1775.

    Article  MathSciNet  Google Scholar 

  7. Einstein, A., B. Podolsky and N. Rosen (1935), “Can Quantum-Mechanical Description of Physical Reality be considered complete?”, Phys. Rev 32, 777–780.

    Article  ADS  Google Scholar 

  8. Popper, R.K. (1957), “The Propensity Interpretation of the Calculus of Probability and the Quantum Theory”, in Observation and Interpretation in the Philosophy of Physics, S. Körner, ed., Butterworth, London.

    Google Scholar 

  9. Sklar, L. (1970), “Is Probability a Dispositional Property?”, J. Phil 67, 355–366.

    Article  Google Scholar 

  10. Giere, R. (1973), “Objective Single-Case Probabilities”, in Logic, Methodology and Philosophy of Science, P. Suppes et al, eds. pp. 457–483.

    Google Scholar 

  11. Schneider, C. (1994), “Two Interpretations of Objective Probabilities”, Philosoph. Naturalis 31, 107–131.

    Google Scholar 

  12. Popper, R.K. (1982), “Quantum Theory and the Schism of Physics”, in Postscript III to the Logic of Scientific Discovery, W.W.Bartley, HI, ed., Hutchinson, London Melbourne, 1988.

    Google Scholar 

  13. Everett, H. (1957), “The Theory of the Universal Wave Function”, theses, Princeton University; reprinted in The Many Worlds Interpretation of Quantum Mechanics, B.S. DeWitt and N. Graham, eds., Princeton University Press, Princeton N.J., 1973, pp. 1–140.

    Google Scholar 

  14. Finkelstein, D. (1962), “The Logic of Quantum Physics”, Trans. NY Acad. Sei 25, 621–637.

    Article  MathSciNet  Google Scholar 

  15. Hartle, J.B. (1968), “Quantum Mechanics of Individual Systems”, Am. J. Phys 36, 704–712.

    Article  ADS  Google Scholar 

  16. Graham, N. (1973), “The Measurement of Relative Frequency”, in The Many-Worlds Interpretation of Quantum Mechanics, B.S. DeWitt and N. Graham, eds., Princeton University Press, Princeton, N.J., pp. 229–252.

    Google Scholar 

  17. DeWitt, B.S. (1971), “The Many-Universes Interpretation of Quantum Mechanics”, in Foundations of Quantum Mechanics, Academic Press, New York, pp. 167–218.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mittelstaedt, P. (1997). Is Quantum Mechanics a Probabilistic Theory?. In: Cohen, R.S., Horne, M., Stachel, J. (eds) Potentiality, Entanglement and Passion-at-a-Distance. Boston Studies in the Philosophy of Science, vol 194. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2732-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2732-7_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4809-7

  • Online ISBN: 978-94-017-2732-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics