Skip to main content

Part of the book series: Eco-Efficiency in Industry and Science ((ECOE,volume 5))

  • 188 Accesses

Abstract

Ammonia has become one of the largest chemical products since its first production in the beginning of this century [Appl, 1992a]. Figure 6.1 shows that the world production of ammonia increased more than a 20-fold in the period 1950–1990 to about 100 million tonne N. The fossil energy consumption for the production of nitrogen fertilizers is dominated by the production of ammonia and can be estimated to be between 3 and 4 EJ2 in 1992, or 3–4% of the fossil energy globally consumed by industry in total3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adris, A.M., S.S.E.H. Elnashaie and R. Hughes (1991), “A Fluidized Bed Membrane Reactor for the Steam Reforming of Methane”, The Canadian Journal of Chemical Engineering 69, p1061–1069.

    Article  Google Scholar 

  • Aika, K.-i. and K. Tamaru (1995), Ammonia Synthesis over Non-Iron Catalysts and Related Phenomena, in: Ammonia - Catalysis and Manufacture, Nielsen (ed.), Springer Verlag, Berl in Heidelberg.

    Google Scholar 

  • Alqahtany, H., D. Eng and M. Stoukides (1993), “Methane Steam Reforming over Fe Electrodes in a Solid Electrolyte Cell”, Energy & Fuels 7, p495–504.

    Article  Google Scholar 

  • Anonymous (1988), “Nitric Acid Process Technology”, Fertilizer Focus(March), p13, 15.

    Google Scholar 

  • Anonymous (1990a), “Nitric Acid Process Technology”, Fertilizer Focus(March), p38–44.

    Google Scholar 

  • Anonymous (1990b), “Reforming the Front End”, Nitrogen(195), p22–36.

    Google Scholar 

  • Anonymous (1993), “GT26 Promises 240 MWe of Record Efficiency”, Modern Power Systems(October), ppp. 17–19.

    Google Scholar 

  • Anonymous (1994), “Catalysts for Ammonia Manufacture”, Fertilizer International(329), p32, 34–36, 38.

    Google Scholar 

  • Anonymous (1997), “Petrochemical Processes ‘87”, Hydrocarbon Processing(March), p108.

    Google Scholar 

  • Appl, M. (1992a), “Modern Ammonia Technology: Where have we got to, where are we going?”, Nitrogen(199), p46–75.

    Google Scholar 

  • Appl, M. (1992b), “Modern Ammonia Technology: Where have we got to, where are we going? (part 2)”, Nitrogen(200), p27–38.

    Google Scholar 

  • Appleby, A.J. (1996), “Fuel Cell Technology: Status and Future Prospects”, Energy–The International Journal 21 (7/8), p521–653.

    Article  Google Scholar 

  • Appleby, A.J. and F.R. Foulkes (1989), Fuel Cell Handbook, Van Nostrand Reinhold, New York.

    Google Scholar 

  • Armor, J.N. (1995), “Membrane Catalysis: Where is it Now, What Needs to be Done?”, Catalysis Today 25, p199–207.

    Article  Google Scholar 

  • Atkins, P.W. (1983), Physical Chemistry, Oxford University Press, Oxford.

    Google Scholar 

  • Ayres, R.U., W.H. Schlesinger. R.H. Socolow (1994), Human Impacts on the Carbon and Nitrogen Cycles, in: Industrial Ecology and Social Change, R.H. Socolow (ed.), Cambridge University Press, Cambridge.

    Google Scholar 

  • Barbieri, G. and F.P. Di Maio (1997), “Simulation of Methane Steam Reforming Process in a Catalytic Pd-Membrane Reactor”, Industrial & Engineering Chemical Research 36 (6), p2121–2127.

    Article  Google Scholar 

  • Barbieri, G., V. Violante, F.P. Di Maio, A. Criscuoli and E. Drioli (1997), “Methane Steam Reforming Analysis in a Palladium-Based Catalytic Membrane Reactor”, Industrial & Engineering Chemical Research 36 (8), p3369–3374.

    Article  Google Scholar 

  • Beer, J. de, E. Worrell, K.Blok (1998), “Future Technologies for Energy-Efficient Iron and Steel Making”, Annual Review of Energy and Environment, 23, p. 123–205.

    Article  Google Scholar 

  • Beer, J. de, E. Worrell and K. Blok (1998), “Long-Term Energy-Efficient Improvements in the Paper and Board Industry”, Energy–The International Journal 23, 1, p. 21–42.

    Article  Google Scholar 

  • Beringer, J.E., N. Brewin and A.W.B. Johnston (1982), Symbitioc Nitrogen Fixation in Plants, in: Bacteria and Plants, M.E. Rhodes-Roberts (ed. ), Academic Press, London.

    Google Scholar 

  • Blok, K. (1993), “The Development of Industrial CHP in the Netherlands”, Energy Policy 21 (February), p158–175.

    Article  Google Scholar 

  • Blok, K. and W.C. Turkenburg (1994), “CO, Emission Reduction by Means of Industrial CHP in the Netherlands”, Energy Conservation and Management 35, p317–340.

    Article  Google Scholar 

  • Bodewes, H. and M.C. Lugten (1992), “A Cogeneration Unit at the Shell Refinery in Frederica”, Comprimo Engineers and Contractors, Amsterdam.

    Google Scholar 

  • Bryan, P.F. (1996), “Composite-Metal Membranes For High-Temperature Hydrogen Separations”, Internet Publication on www.bendresearch.co, Page made on 30 September 1996, Bend Research, Bend OR.

    Google Scholar 

  • Chauvel, A. and G. Lefebre (1989), Petrochemical Processes, Insitut Francais du Petrole Publications, Paris.

    Google Scholar 

  • Clarke, S.J. and W.J. Mazzafro (1993), Nitric Acid, in: Kirk-Othmer Encyclopedia of Chemical Technology, J.I. Kroschwitz (ed.), vol. 17, John Wiley & Sons, New York.

    Google Scholar 

  • Cremer, H. (1980), Thermodynamic Balance and Analysis of a Synthesis Gas and Ammonia Plant, in: Thermodynamics: Second Law Analysis, R.A. Gaggioli (ed.), ACS Symposium Series, vol. 122, American Chemical Society, Washington D.C.

    Google Scholar 

  • Czuppon, T.A. (1994), “Advanced Ammonia Technologies”, Fertiliser Industry–Annual Review 17, p63–68.

    Google Scholar 

  • Czuppon, T.A., S.A. Knez and J.M. Rovner (1993), Ammonia, in: Kirk-Othmer Encyclopedia of Chemical Technology, J.I. Kroschwitz (ed.), vol. 2, John Wiley & Sons, New York.

    Google Scholar 

  • Czuppon, T.A., S.A. Knez and R.B. Strait (1996), “Commercial Experience Review of KAAP and KRES”, Presented at AIChE Safety Symposium, Boston (MA).

    Google Scholar 

  • Deshmukh, D. (1993), “Energy Savings and Capacity Utilization of Advanced Control Systems”, Ammonia Plant Safety 33, p278–288.

    Google Scholar 

  • Dickman, S. (1987), “West German Release of Altered Bacteria Causes Furore”, Nature 328, p568.

    Google Scholar 

  • Drioli, E. and L. Giorno (1996), “Catalytic Membrane Reactors”, Chemistry and Industry(Jan I), p19–22.

    Google Scholar 

  • Dudnikov, Y.S., M.Y. Kuprikov and V.I. Vakhrushev (1988), “Production of Nitric Acid by the Plasma Chemical Method at the Point of Use”, Soviet Chemical Industry 20 (10), p56–58.

    Google Scholar 

  • Dybkjaer, I. (1995a), Ammonia Production Processes, in: Ammonia - Catalysis and Manufacture, Nielsen (ed.), Springer-Verlag, Berl in Heidelberg.

    Google Scholar 

  • Dybkjaer, I. (1995b), “Tubular Reforming and Autothermal Reforming of Natural Gas–An Overview of Available Processes”, Fuel Processing Technology 42, p85–107.

    Article  Google Scholar 

  • Dybkjaer, I. and E.A. Gram (1984), “Energy Savings in Ammonia Synthesis–Design of Converters and High Activity Catalysts”, Chemical Economy and Engineering Review 16 (9), p29–35.

    Google Scholar 

  • Edlund, D.J. and J.R. Peterson (1995), “Hydrogen Separation and Purification using a Practical Metal Membrane”, Presented at 6th Annual US Hydrogen Conference, Alexandria, Virginia.

    Google Scholar 

  • Ermenc, E.D. (1956a), “Wisconsin Process Pebble Furnace Fixes Atmospheric Nitrogen”, Chemical Engineering Progress 52 (4), p149–153.

    Google Scholar 

  • Ermenc, E.D. (1956b), “Wisconsin Process System for Recovery of Dilute Oxides of Nitrogen”, Chemical Engineering Progress 52 (11), p488–492.

    Google Scholar 

  • FAO (1996), “FAO Fertilizer Yearbook”.

    Google Scholar 

  • Foster, E.G. and F. Daniels (1951), “Recovery of Nitrogen Oxides by Silica Gel”, Industrial and Engineering Chemistry 43 (4), p986–992.

    Article  Google Scholar 

  • Fryzuk, M., J.B. Love, S.J. Rettig and V.G. Young (1997), “Transformation of Coordinated Dinitrogen by Reaction with Dihydrogen and Primary Silanes”, Science 275 (5305), p1445–1447.

    Article  Google Scholar 

  • Fujimoto, N., A. Saikusa, K. Hada and Y. Sudo (1992), Safety Analysis and Considerations for HTTR Steam Reforming Hydrogen/Methanol Co-Production System, in: High Temperature Applications of Nuclear Energy(ed.), IEAE, Oarai, Japan.

    Google Scholar 

  • Gilbert, N. and F. Daniels (1948), “Fixation of Atmospheric Nitrogen in a Gas Heated Furnace”, Industrial and Engineering Chemistry 40 (9), p1719–1723.

    Article  Google Scholar 

  • Gosnell, J. (1997), Personal Communication, Brown & Root, August 28, 1997.

    Google Scholar 

  • Grotz, B.J. and L. Grisolia (1992), “Fifth Anniversary of Ammonia Unit E”, Nitrogen(199), p39–45.

    Google Scholar 

  • Haber, L.F. (1971), The Chemical Industry 1900–1930 - Internationl Growth and Technological Change, Clarendon Press, Oxford.

    Google Scholar 

  • Hada, K., N. Fujimoto and Y. Sudo (1992), Design of Steam Reforming Hydrogen and Methanol Co-Production System to be Connected to the HTTR, in: High Temperature Applications of Nuclear Energy(ed.), IEAE, Oarai, Japan.

    Google Scholar 

  • Heath, R., J. Mulckhuyse and S. Venkataram (1985), “The Potential for Energy Efficiency in the Fertilizer Industry”, The World Bank, Washington, D.C.

    Google Scholar 

  • Hendriks, C. (1994), “Carbon Dioxide Removal from Coal-Fired Power Plants”,PhD Thesis,, Utrecht.

    Google Scholar 

  • Hinderink, A.P., F.P.J.M. Kerkhof, A.B.K. Lie, J. De Swaan Arons and H.J. van der Kooii (1996), “Exergy Analysis With a Flowsheeting Simulator–II. Application; Synthesis Gas Production From Natural Gas”, Chemical Engineering Science 51 (20), p4701–4715.

    Article  Google Scholar 

  • Hoffmeister, G. (1993), Fertilizers, in: Kirk-Othmer Encyclopedia of Chemical Technology, J.I. Kroschwitz (ed.), vol. 10, John Wiley & Sons, New York.

    Google Scholar 

  • Honti, G.D. (Ed.) (1976), The Nitrogen Industry,Akademiaa Kiado, Budapest.

    Google Scholar 

  • Ihde, A.J. (1964), The Development of Modern Chemistry, Harper & Row, New York.

    Google Scholar 

  • Kinzig, A.P. and R.H. Socolow (1994), “Human Impacts on the Nitrogen Cycle”, Physics Today(November), p24–31.

    Google Scholar 

  • Koros, W.J. and G.K. Flemming (1993), “Membrane-Based Gas Separation”, Journal of Membrane Science 93, p1–80.

    Article  Google Scholar 

  • Krachtwerktuigen (1986), “Survey of Gas Turbines Available in the Netherlands”, Krachtwerktuigen, Amersfoort, the Netherlands.

    Google Scholar 

  • Kreith, F. and R.E. West (Eds.) (1997), CRC Handbook of Energy Efficiency,CRC Press, Boca Raton.

    Google Scholar 

  • Kropff, M.J. and C.T.J. Spitters (1990), “Grondslagen Plantaardige Produktie”, Vakgroep

    Google Scholar 

  • Theoretische Plantenkunde, Landbouwuniversiteit Wageningen, Wageningen. Kugeler, K. and R. Schulten (1989), Hochtemperaturreaktortechnik, Springer-Verlag, Berlin.

    Google Scholar 

  • Laciak, D.V. and G.P. Pez (1988), Ammonia Separation Using Ion Exchange Polymeric Membranes and Sorbents, US, Air Products and Chemicals, Inc.

    Google Scholar 

  • Lwgsgaard Jorgensen, S., P.E. HOjlund Nielsen and P. Lehrmann (1995), “Steam Reforming of Methane in a Membrane Reactor”, Catalysis Today 25 (3/4), p303–307.

    Google Scholar 

  • Laplaza, C.E. and C.C. Cummins (1995), “Dinitrogen Cleavage by a Three-Coordinate Molybdenum(III) Complex”, Science 268 (12 May), p861–863.

    Article  Google Scholar 

  • LeBlanc, J.R. (1984), “Make Ammonia with less Energy”, Hydrocarbon Processing(July). LeBlanc, J.R. (1996), “Ammonia 2000 - Kellogg Technology for the Future”, Presented at Asia Nitrogen ‘86, Singapore.

    Google Scholar 

  • Leigh, G.J. (1991), What Does the Future Hold? - A Survey of Possible Technological Developments, in: Catalytic Ammonia Synthesis, J.R. Jennings (ed.), Fundamental and Applied Catalysis, M. V. Twigg, Plenum Press, New York.

    Google Scholar 

  • Leigh, G.J. (1997), “Biological Nitrogen Fixation and Model Chemistry”, Science 275 (5305), p14–42.

    Article  Google Scholar 

  • Livingstone, J.G. and A. Pinto (1983), “The AMV process provides a simplified plant with reduced capital costs; optimum use is made of natural gas as feedstock source”, Chemical Engineering Progress(May), p62–66.

    Google Scholar 

  • Mittasch, A. (1951), Geschichte der Amntoniaksynthese, Verlag Chemie, Weinheim.

    Google Scholar 

  • Moore, T. (1997), “Market Potential High for Fuel Cells”, EPRI Journal(May/June), p6–17.

    Google Scholar 

  • MEM-kast, Mulder, A. (1993), “Development of Metal-based Silica Membranes for Gas Separation”,PhD Thesis

    Google Scholar 

  • Mulder, M. (1996), Basic Principles of Membrane Technology, Kluwer Academic Publishers, Dordrecht.

    Book  Google Scholar 

  • Nielsen, S.E. (1997), “Key Parameters Affecting Process Flexibility and Operating Costs”, Haldor Topsoe, Copenhagen.

    Google Scholar 

  • Nieuwlaar, E. (1988), “Developments in Energy Analysis”,PhD Thesis,, Utrecht.

    Google Scholar 

  • Nieuwlaar, E. (1996), “ENERPACK 5 - A Package for the Thermodynamic Analysis of Energy Systems”, Utrecht Univeristy, Department of Science, Technology and Society, Utrecht.

    Google Scholar 

  • OECD (1997), CO 2 Emissions From Fuel Combustion, OECD, Paris.

    Google Scholar 

  • Pez, G.P. and D.V. Laciak (1988), Ammonia Separation Using Semipermeable Membranes, US, Air Products and Chemicals, Inc.

    Google Scholar 

  • Postgate, J. (1987), Nitrogen Fixation, London, Edward Arnold.

    Google Scholar 

  • Radgen, P. (1996), “Pinch and Exergy Analysis of a Fertlizer Complex–Part 1”, Nitrogen 224, p39–48.

    Google Scholar 

  • Radgen, P. (1997), “Pinch and Exergy Analysis of a Fertlizer Complex–Part 2”, Nitrogen 225, p27–39.

    Google Scholar 

  • Rickert, L. (1974), “The Efficiency of Energy-Utilization in Chemical Processes”, Chemical Engineering Science 29, p1613–1620.

    Article  Google Scholar 

  • RIVM (1996), Achtergronden bij de Milieubalans 96 (Background Information on the Environmental Balance 1996 ), Samsom H.D. Tjeenk Willink, Alphen aan den Rijn (The Netherlands).

    Google Scholar 

  • Rostrup-Nielsen, J.R. (1994), “Catalysis and Large-Scale Conversion of Natural Gas”, Catalysis Today 21, p257–267.

    Article  Google Scholar 

  • Saracco, G., G.F. Versteeg and W.P.M. van Swaaij (1994), “Current Hurdles to the Succes of High-Temperature Membrane Reactors”, Journal of Membrane Science 95, p105–123.

    Article  Google Scholar 

  • Shah, R.K. (1997), Recuperators, Regenerators and Storage: Recuperators, Regenerators and Compact Heat Exchangers, in: CRC Handbook of Energy Efficiency, F. Kreith and R.E. West (ed.), CRC, Boca Raton.

    Google Scholar 

  • Shan, H., Y. Yang, A.J. James and P.R. Sharp (1997), “Dinitrogen Bridged Gold Clusers”, Science 275 (5303), p1460–1462.

    Article  Google Scholar 

  • Smil, V. (1997), “Global Population and the Nitrogen Cycle”, Scientific American(July 1997 ), p58–63.

    Google Scholar 

  • Smit, R. and J. de Beer (1995), “Applicability of the High Temperature Nuclear Reactor in the Production of Methanol and Ammonia (Inpasbaarheid van de hogetemperatuurreactor in de produktie van methanol en ammoniak), Department of Science, Technology and Society, Utrecht.

    Google Scholar 

  • Smith, M.D. (1996), Plasma Technology, in: Kirk-Othmer Encyclopedia of Chemical Technology, J. Kroschwitz (ed.), vol. 19, John Wiley & Sons, New York.

    Google Scholar 

  • Sogge, J. and T. Strom (1997), Membrane Reactors - A New Technology for Production of Synthesis Gas by Steam Reforming, in: Natural Gas Conversion IV, M. de Pontes, R.I. Espinoza, et al. (ed.), Studies in Surface Science and Catalysis, vol. 107, Elsevier Science, Amsterdam.

    Google Scholar 

  • Soria, R. (1995), “Overview on Industrial Membranes”, Catalysis Today 25 (3/4), p285–290.

    Article  Google Scholar 

  • Strom, T., T. Pettersen, T. Sundset and J. Sogge (1997), “Use of Membrane Reactor in Production of Synthesis Gas–Process Options”, Presented at ECCE-1, May 5–7, Florence, Italy.

    Google Scholar 

  • Stryer, L. (1981), Biochemistry, W.H. Freeman and Company, San Francisco.

    Google Scholar 

  • Szargut, J., D.R. Morris and F.R. Steward (1988), Exergy Analysis of Thermal. Chemical and Metallurgical Processes, Hemispere, New York.

    Google Scholar 

  • Tamaru, K. (1991), The History of the Development of Ammonia Synthesis, in: Catalytic Ammonia Synthesis - Fundamentals and Practice, J.R. Jennings (ed.), Fundamentals and Applied Catalysis, M. V. Twigg and M.S. Spencer, Plenum Press, New York.

    Google Scholar 

  • Tennison, S.R. (1997), “An Overview of the Joule Project - ”Microporous Ceramic Membranes for Gas Separation Processes“ - JOE-CT95–0018”, Materials and Science Technology Int. Ltd., Henley Park, Guildford GU32AF, UK.

    Google Scholar 

  • Timmins, R.S. and P.R. Ammann (1967), Nitrogen Fixation, in: The Application of Plasma to Chemical Processing, R.B. Baddour and R.S. Timmins (ed. ), Pergamon Press, Oxford.

    Google Scholar 

  • Topham, S.A. (1985), The History of the Catalytic Synthesis of Ammonia, in: Catalysis, Science and Technology, J.R. Anderson and M. Boudart (ed.), vol. 7, Springer-Verlag, Berlin.

    Google Scholar 

  • Topsoe (1997), “Highlights of the Topsoe Low Energy Ammonia Process”, Haldor Topsoe, Lyngby (Denmark).

    Google Scholar 

  • Vayenas, C.G. and R.D. Farr (1980), “Cogeneration of Electric Energy and Nitric Oxide”, Science 208, p593–594.

    Article  Google Scholar 

  • VDI (1990), “VDI-Guidelines: Emission Control Nitric Fertilizers”, Verein Deutsher Ingenieure, Düsseldorf.

    Google Scholar 

  • Veen, H. van (1997), Personal Communication, Project Manager Inorganic Membranes, Netherlands Energy Research Foundation ECN - Unit Energy Efficiency, Petten, 23 October 1997.

    Google Scholar 

  • Venugopolan, M. and S. Veprek (1983), Kinetics and Catalysis in Plasma Chemistry, in: Plasma Chemistry IV, F. Boschke (ed.), Topics in Current Chemistry, vol. 107, Springer-Verlag, Berlin.

    Google Scholar 

  • Voet, E. van de, Klein R and H.A. Udo de Haes (1996), “Nitrogen Pollution in the European Uinio–Orgins and Proposes Soluitons”, Environmental Conservation 23 (2), p120–132.

    Article  Google Scholar 

  • Weast, R.C. (Ed.) (1983), CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Weatherly (1997), “Nitric Acid Plant Reference List”, Weatherly Inc., Chemateur Engineering Group, Atlanta.

    Google Scholar 

  • WEC (1995), “Energy Efficiency Improvement Utilizing High Technology”, World Energy Council, London.

    Google Scholar 

  • Westerterp, K.R. (1993), New Methanol Process, in: Energy Efficiency in Process Technology, P.A. Plivachi (ed. ), Elsevier Applied Science, London.

    Google Scholar 

  • Westerterp, K.R., T.N. Bodewes, M.S.A. Vrijland and M. Kuczynski (1988), “Two New Methanol Converters”, Hydrocarbon Processing(November), p69–73.

    Google Scholar 

  • Westerterp, K.R. and M. Kuczynski (1987), “A Model for a Countercurrent Gas-Solid-Solid Trickle Flow Reactor for Equilibrium Reactors. The Methanol Syntheis”, Chemical Engineering Science 42 (8), p1871–1885.

    Article  Google Scholar 

  • Westerterp, K.R., M. M. Kuczymski and c.H.M. Kamphuis (1989), “Synthesis of Methanol in a Reactor with Interstage Product Removal”, Ind. Eng. Chem. Res. 28, p763–771.

    Article  Google Scholar 

  • Weston, C.W. (1993), Ammonia Compounds, in: Kirk-Othmer Encyclopedia of Chemical Technology, J.I. Kroschwitz (ed.), vol. 2, John Wiley & Sons, New York.

    Google Scholar 

  • Williams, R.H., E.D. Larson, R.E. Katofsky and J. Chen (1995), “Methanol and Hydrogen from Biomass for Transportation, with Comparison to Methanol adn Hydrogen from Natural Gas and Coal”, The Center for Energy and Environmental Studies, Princeton University, Princeton (NJ).

    Google Scholar 

  • Wordragen, M. van (1996), “Bacteriën in plaats van kunstmest”, Intermediair 32 (50), p43.

    Google Scholar 

  • Worrell, E. and J.G. de Beer (1995), “Energy Savings in the Nitrogen Fertilizer Industry”, Fertilizer Interantional 18, p123–132.

    Google Scholar 

  • Worrell, E. and K. Blok (1994), “Energy Savings in the Nitrogen Fertilizer Industry in the Netherlands”, Energy 19 (2), p195–209.

    Article  Google Scholar 

  • Worrell, E., B. Meuleman and K. Blok (1995), “Energy Savings by Efficient Application of Fertilizer”, Energy (accepted for publication).

    Google Scholar 

  • Zaman, J. and A. Chakma (1994), “Inorganic Membrane Reactors”, Journal of Membrane Science 92, p1–28.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Blok, K. (2000). Fixing Atmospheric Nitrogen with Less Energy. In: Potential for Industrial Energy-Efficiency Improvement in the Long Term. Eco-Efficiency in Industry and Science, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2728-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2728-0_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5444-9

  • Online ISBN: 978-94-017-2728-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics