Skip to main content

Part of the book series: Eco-Efficiency in Industry and Science ((ECOE,volume 5))

Abstract

The iron and steel industry is the largest energy-consuming manufacturing industry in the world. In 1990, its global energy consumption was estimated to be 18–19 EJ, or 10–15% of the annual industrial energy consumption [WEC, 1995]. Figure 5.1 shows that the annual world steel production has increased from about 100 million tonnes in 1945 to about 770 million tonnes in 1990 [IISI, 1992; IISI, 1996a]. The global steel production is expected to grow further by about 1.7% a year, mainly because of an increase in steel consumption in developing countries [Tilton, 1990; WEC, 1995]. At present the apparent steel consumption per capita in these countries is only one seventh of that in OECD-countries, but this situation is likely to change [WEC, 1995]. Whereas the crude steel production in OECD countries has remained fairly stable at 320–370 million tonnes per year since 1980, the production in developing countries is growing steadily at a rate of more than 6% annually and reached about 240 million tonnes in 1993 [WEC, 1995]. This growth is expected to continue. As a result, the global steel production might rise to 1280 million tonnes in the year 2020, assuming a business-as-usual scenario. In this scenario the global energy consumption of the iron and steel industry is projected to increase to more than 25 EJ in the year 2020 [WEC, 1995].

Published in: Annual Review of Energy and Environment (23) 1998, p123–205. Coauthors: Ernst Worrell (Lawrence Berkeley National Laboratory, Berkeley CA, USA) and Kornelis Blok (Department of Science, Technology and Society, Utrecht University).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anonymous (1990), “Revolution in steel production (Revolutie in staalproduktie),Intermediair 26(41 (In Dutch)), p41.

    Google Scholar 

  • Anonymous (1996a), “DIOS Pilot Plant Operation Ends, Process Awaits Commercialization”, Iron & Steelmaker 23 (3), p9.

    Google Scholar 

  • Anonymous (1996b), “Today’s Steel Technology”, Advanced Materials & Processes 149 (1), p32–35.

    Google Scholar 

  • Anonymous (1997a), “Hoogovens Considers Combined Casting-Milling (Hoogovens denkt aan gietwalsen)”, Trouw, p(In Dutch).

    Google Scholar 

  • Anonymous (1997b), “Thyssen Makes Considerable Investments in Thin Slab Casting (Thyssen investeert fors in dunne-plakgieten)”, Technisch Weekblad 11(28 (In Dutch)).

    Google Scholar 

  • Badra, C. (1995), “Industry, Trade and Technology Review”, Office of Industries - United States International Trade Commission, Washington DC.

    Google Scholar 

  • Beer, J. de, E. Worrell and K. Blok (1997), “Long-Term Energy-Efficiency Improvements in the Paper and Board Industry”, Energy–The International Journal 23 (1), p21–42.

    Article  Google Scholar 

  • Bisio, G. (1993), “Exergy Method for Efficient Energy Resource Use in the Steel Industry”, Energy–The International Journal 18 (9), p971–985.

    Article  Google Scholar 

  • Bisio, G. (1997), “Energy Recovery from Molten Slag and Exploitation of the Recovered Energy”, Energy–The International Journal 22 (5), p501–509.

    Article  Google Scholar 

  • Bisio, G. and S. Poggi (1990), “Efficient Energy Resource Use in the Steel Industry with Particular Reference to Italy”, 25th Intersociety Energy Conversion Engineering Conference, New York.

    Google Scholar 

  • Bisio, G. and S. Poggi (1991), “The Possible Uitlization of the Thermal Energy Discharged from Sintering Plants of Steel Works”, 26th Intersociety Energy Conversion Engineering Conference, New York.

    Google Scholar 

  • Bock, M., G.A. Boyd, S.H. Karlson and M. Ross (1994), “Best Practice Electricity Use in Steel Minimills”, Iron & Steelmaker 21 (5), p63–66.

    Google Scholar 

  • Bosley, J.J., J.P. Clark, T.E. Dancy, R.J. Fruehan and E.H. McIntyre (1987), “Technoeconomic Assessment of Electric Steelmaking Through the Year 2000”, Center for Metals Production, Pittsburgh.

    Google Scholar 

  • Boustead, I. and G.F. Hancock (1979), Handbook of Industrial Analysis, John Wiley & Sons, New York.

    Google Scholar 

  • Chatterjee, A. (1996), Beyond the Blast Furnace, CRC Press, Boca Raton.

    Google Scholar 

  • Cheeley, R.B., E. Eichberger and A. Bolkart (1996), “COREX/MIDREX On the Way to Commercialization”, Direct from Midrex(4), p8–9.

    Google Scholar 

  • Considine, I. and D. Maxwell (Eds.) (1974), Chemical and Process Technology Encyclopedia, McGraw-Hill, New York.

    Google Scholar 

  • COREX (1996), “COREX - Revolution in Ironmaking”, Voest-Alpine Industrieanlagenbau GmbH, Linz.

    Google Scholar 

  • Cusack, B.L., G.S. Wingrove and G.J. Hardie (1995), “Initial Operation of the HISmelt Research and Development Facility”, Iron and Steelmaker 2 (22), p13–20.

    Google Scholar 

  • Dijk, K.M. van, R. van Dijk, V.J.L van Eekhout, H. van Hulst, W. Schipper and J.H. Stam (1994), “Methanol from Natural Gas”, Delft University of Technology, Delft.

    Google Scholar 

  • Dungs, H and U. Tschirner (1994), “Energy and Material Conversion in Coke Dry Quenching Plants as Found in Existing Facilities”, Coke Making International 6 (1), p19–29.

    Google Scholar 

  • Eberle, A., W. Schiffer and S. Siuka (1996), “Start-Up and First Operational Results of the COREX Plant C-2000 at POSCO’s Pohang Works”, VOEST-ALPINE Industrieanlagenbau GmbH, Linz.

    Google Scholar 

  • EZ (1994), “From World Market to End User (Van Wereldmarkt tot Eindverbruiker)”, Ministry of Economic Affairs, The Hague.

    Google Scholar 

  • Farley, J.M. and P.J. Koros (1992), “Progress Towards Direct Steelmaking in the USA”, Steel Times International(March), p22–23.

    Google Scholar 

  • Faure, H. (1993a), “The New Technologies for Iron and Steelmaking”, 27th IISI Annual Meeting and Conference, Paris, IISI.

    Google Scholar 

  • Faure, H. A. (1993b), “Development, State of the Art and Future Aspects of Steelmaking”, Metallurgical Plant and Technology International 16 (3), p32–41.

    Google Scholar 

  • Hemming, G. (1995), Personal Communication, SMS Schloemann-Siemag, 30 May 1995.

    Google Scholar 

  • Hemming, G., P. Kappes, W. Rohde and L. Vogtmann (1988), “Rolling of Continuously Cast Strips and the Technical Consequences With Respect to the Design of Hot Strip Production Plants”, MPT 11 (1), p16–35.

    Google Scholar 

  • Fruehan, R.J. (1994), “Effect of Emerging Technologies on the Competitiveness in the Steel Industry”, Iron & Steelmaker 21 (2), p17–21.

    Google Scholar 

  • Furukawa, T. (1994), “5,000 Daily Tons of Direct Ion-Ore Smelting by 2000”, New Steel 10 (11), p36–38.

    Google Scholar 

  • Ghamarin, A. and A.B. Cambel (1982), “Exergy Analysis of Illinois No. 6 Coal”, Energy The International Journal 7 (6), p483–488.

    Article  Google Scholar 

  • Gielen, D.J. and A.W.N. van Dril (1997), “The Basic Metal Industry and its Energy Use”, ECN, Petten, The Netherlands.

    Google Scholar 

  • Gomez, M., J.G. Gayle and A.R. taylor (1965), “Heat Content on Specific Heat of Coals and Related Products”, US Bureau of Mines Report of Investigation 66076, Washington.

    Google Scholar 

  • Gool, W. van (Ed.) (1986), Poly-energy Handbook (Poly-energyie zakboekje),PBNA, The Hague.

    Google Scholar 

  • Gretz, J., W. Korf and R. Lyons (1991), “Hydrogen in the Steel Industry”, Int. J. Hydrogen Energy 16 (10), p691–693.

    Article  Google Scholar 

  • Hammersley, G. (1973), “The Charcoal Iron Industry and its Fuel”, Econ. Hist. Rev., p593–613.

    Google Scholar 

  • Heal, D.W. (1975), “Modern Perspectives on the History of Fuel Economy in the Iron and Steel Industry”, Ironmaking and Steelmaking (Quarterly) 4, p222–227.

    Google Scholar 

  • Hendricks, C. (1995), “Strip Casting–A Revolution in the Steel Industry?”, Metallurgical Plant Technology 18 (3), p42–49.

    Google Scholar 

  • Hendriks, C. (1994), “Carbon Dioxide Removal from Coal-Fired Power Plants”, Thesis, Utrecht University

    Book  Google Scholar 

  • Hofer, L. (1996), “Steel Production Technologies–Fuchs and VAI Have Joined Forces”, Steel Standard–VAI Steelmaking Technology 7 (6), p2–3.

    MathSciNet  Google Scholar 

  • Hofer, L. (1997a), Personal Communication, Voest Alpine Industrieanlagenbau GmbH, Linz, 23 May 1997.

    Google Scholar 

  • Hofer, L. (1997b), “Electric Steelmaking with FUCHS Shaft Furnace Technology”, VAI, Linz, Austria.

    Google Scholar 

  • Hoffman, J.P. (1992), “Presidential Address: Oxygen-coal In-bath Smelting Reduction–a Future Process for the Production of Iron and Stainless Steel?”, Journal of the South African Institute of Mining and Metallurgy 92 (8/9), p253–273.

    Google Scholar 

  • Hoogovens (1995), “Cyclone Converter Furnace - leaflets”, Hoogovens Staal, IJmuiden, Netherlands.

    Google Scholar 

  • Hoogovens (1996), “Environmental Report 1995 (Milieujaarverslag 1995)”, Hoogovens Staal (In Dutch), IJmuiden.

    Google Scholar 

  • Hyde, C.K. (1977), Technological Change and the British Iron Industry, 1700–1870, Princeton University Press, Princeton.

    Google Scholar 

  • IEA (1993), “Energy Prices and Taxes”, IEA, Paris.

    Google Scholar 

  • IISI (1982), “Energy and the Steel Industry”, International Iron and Steel Institute, Brussels.

    Google Scholar 

  • IISI (1990), “Statistics on Energy in the Steel Industry ( 1990 Update)”, International Iron and Steel Institute, Brussels.

    Google Scholar 

  • IISI (1992), “Steel Statistics Yearbook 1992”, International Iron and Steel Institute, Brussels.

    Google Scholar 

  • IISI (1996a), “Statistics on Energy in the Steel Industry ( 1996 Update)”, International Iron and Steel Institute, Brussels.

    Google Scholar 

  • IISI (1996b), “Steel Statistics Yearbook 1995”, International Iron and Steel Institute, Brussels.

    Google Scholar 

  • Innes, J.A. (1995), “From Direct Reduction to Direct Smelting - Options for an Expanding China”, Pacific Economic Co-operation Council Minerals and Energy Forum, Beijing.

    Google Scholar 

  • Jeans, J.S. (1882), “On the Consumption and Economy of Fuel in the Iron and Steel Manufacture”, Journal of the Iron and Steel Institute 3, p128–179.

    Google Scholar 

  • Juleff, G. (1996), “An Ancient Wind-Powered Iron Smelting Technology in Sri Lanka”, Nature 379 (4 January), p60–63.

    Article  Google Scholar 

  • Kirk-Othmer (1981), John Wiley & Sons, New York.

    Google Scholar 

  • Kreulitsch, H., W. Egger, H. Wiesinger and A. Eberle (1993), “Iron and Steelmaking of the Future”, Steel Times 221 (5), p217–220.

    Google Scholar 

  • Kruger, D. (1995), “CPR- A combined Casting/Rolling Process for Producing Steel Strip”, Iron and Steel Engineer 72 (45), p31–36.

    Google Scholar 

  • Kudrin, V.A. (1985), Steel Making, Mir Publishers, Moscow.

    Google Scholar 

  • Langen, J. van, K. Meijer, M. Corbett and G. Malgarini (1992), “The Cyclone Convertor Furnace”, Journees Siderurgiques ATS 1992, Paris.

    Google Scholar 

  • Lassat de Pressigny, Y. de (1993), “Jupiter - A Virgin Iron Production Process for Scarp Based Steel Making”, Steel Times 221 (12), p513.

    Google Scholar 

  • Maier, W. and G. Angerer (1986), Rational Energy Use by New Technologies (Rationelle Energieverwendung durch neue Technologien), Verlag TÜV Rheinland GmbH (in German ), Köln.

    Google Scholar 

  • McIntyre, E.H. and E.R. Landry (1992), “Electric Arc Furnace Efficiency”, The EPRI Center for Materials Production, Pittsburgh.

    Google Scholar 

  • Meijer (1995), Personal Communication, Hoogovens Corporate Research Laboratorium, IJmuiden, 17 July 1995.

    Google Scholar 

  • Meijer, H.K.A., C.P. Teerhuis, G.A. Flierman and R. Boom (1995), “The Cyclone Converter Furnace–Recent Developments”, La revue de Metallurgie–ATS-JS, p42–43.

    Google Scholar 

  • Meijer, K. (1996), Personal Communication, Hoogovens Corporate Research Laboratorium, IJmuiden, 13 June 1996.

    Google Scholar 

  • Meijer, K. (1997), Personal Communication, Hoogovens Corporate Research Laboratorium, IJmuiden, 17 March 1997.

    Google Scholar 

  • Midrex (1991), “Midrex - Economical Ironmaking Alternatives for Modern Steelmaking”, Midrex Direct Reduction Corporation, Charlotte, NC, USA.

    Google Scholar 

  • Midrex (1996), 1995 World Direct Reduction Statistics, Midrex Direct Reduction Corporation, Charlotte, NC, USA.

    Google Scholar 

  • Millbank, P. (1995), “Direct Route to Iron Gathers Momentum”, Metal Bulletin Monthly (Metals Technology Supplement)(April), p21, 24–25.

    Google Scholar 

  • Mou, R., D. Chase, F. Hofmann and F.J. Kuper (1994), “CSP plant Nucor Steel, Hickman: The Outstanding Performance and the Expansion to Two Strands”, 2nd European Conference on Continuous Casting, Düsseldorf, June 20–22, The German Iron and Steel Institute.

    Google Scholar 

  • Nieuwlaar, E. (1996), “Enerpack 5”, Utrecht University, Dept. of Science, Technology and Society, Utrecht.

    Google Scholar 

  • Norris, P (1996), Internet Publication on Page made on August, 30, 1996 1996, IISI, Brussel.

    Google Scholar 

  • Parodi, G.G. (1993), “Near Net Shape Casting of Flat Products”, 27th IISI Annual Meeting and Conference, Paris, IISI.

    Google Scholar 

  • Patuzzi, A., K. Antlinger, H. Grabner and W. Krieger (1990), “Comparative Study of Modern Scrap Melting Processes”, The Sixth International Iron and Steel Congress, Nagoya, Japan, Iron and Steel Institute Japan.

    Google Scholar 

  • Porterfield, W.W. (1984), Inorganic Chemistry, Addison-Wesley Publishing Company, Reading, UK.

    Google Scholar 

  • Prideaux, R.N. (1996), “The Hlsmelt Process; Premium Grade Metallicss for Asia”, SEAISI 25th Anniversary Conference, Bangkok.

    Google Scholar 

  • Puehringer, O., H. Wiesinger, B.H.P. Havenga, R. Hauk, W.L. Kepplinger and F. Wallner (1991), “Practical Experience with the Corex-process and its Potential for Development (Betriebserfahrungen mit dem Corex-Verfahren und dessen Entwicklungspotential)”, Eisen und Stahl 111(9), p37–44 (In German).

    Google Scholar 

  • Ree, R. van, A.B.J. Oudhuis, A. Faaij and A.P.W.M. Curvers (1995), “Energy from Biomass: An Assessment of Two Promising Systems for Energy Production - Report 3. 3: Modelling of a BIG/CC System With Aspen+.”, Netherlands Energy Research Foundation, Petten, The Netherlands.

    Google Scholar 

  • Rohde, W. and G. Hemming (1995), “Stand, Leistungsvermögen und Weiterentwicklung der CSP-Technologie”, Stahl und Eisen 115 (9), p89–100.

    Google Scholar 

  • Rong, Shen Wen, Liu Jian and Gerhard Fuchs (1996), “Compact Mill Concepts in Electric

    Google Scholar 

  • Furnace Steel Making“, Steel Standard - VAI Steelmaking Technology 7(6), p9–14.

    Google Scholar 

  • Rosenberg, N. (1982), Inside the Black Box, Cambridge University Press, Cambridge. Rossillo-Calle, F., M.A.A. de Rezende, P. Furtado and D.O. Hall (1996), The Charcoal Dilemma, Intermediate Technology Publications, London.

    Google Scholar 

  • Salak, D. (1995), Ferrous Powder Metallurgy, Cambridge International Science Publishing, Cambridge.

    Google Scholar 

  • Siemens, C.W. (1873), “On the Manufacture of Iron and Steel by Direct Process”, Journal of the Iron and Steel Institute 5, p37–91.

    Google Scholar 

  • Smith, T. (1995), “European Electric Steel Congress Attracts 1000 Delegates”, Steel Times 223(7), p272–273, 278.

    Google Scholar 

  • SMS (1995), “CSP Technology Revolutionizing Hot Strip Production -Leaflet”, SMS Schloemann-Siemag, Dusseldorf.

    Google Scholar 

  • Soldaat, A. (1997), “Twelve Projects Against CO2-emission Receive 280 million Dutch Guilders (Twaalf projecten tegen CO2 uitstoot krijgen 280 miljoen gulden)”, Energie-en Milieuspectrum(5), p28–29 (In Dutch).

    Google Scholar 

  • Spielmann, P.E. (1924), The Constituents of Coal Tar, Longmans Green, London.

    Google Scholar 

  • Stam, B. (1997), “Hoogovens Considers Thin Slab Casting (Hoogovens overweegt dunneplakgieten)”, Technisch Weekblad 11(28), pl.

    Google Scholar 

  • Stelco (1993), “Present and Future Use of Energy in the Canadian Steel Industry”, Efficiency and Alternative Energy Technology Branch, CANMET, Energy, Mines and Resources Canada, Ottawa.

    Google Scholar 

  • Stepanov, V.S. (1993), Analysis of Energy Efficiency of Industrial Processes, Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Szargut, J. and D.R. Morris (1987), “Cumulative Exergy Consumption and Cumulative Degree of Perfection of Chemical Processes”, Energy Research 11, p245–261.

    Article  Google Scholar 

  • Szargut, J., D.R. Morris and F.R. Steward (1988), Exergy Analysis of Thermal, Chemical, and Metallurgical Processes, Hemisphere Publishing Coporation, New York.

    Google Scholar 

  • Szekely, J. and G. Trapaga (1994), “Some Perspectives on New Steelmaking Technologies”, Metallurgical Plant and Technology International 17 (4), p30–47.

    Google Scholar 

  • Takano, H., Y. Kitauchi and H. Hiura (1988), “Design for the 145MW Blast Furnace Gas Firing Gas Turbine Combined Cycle Plant”, Gas Turbine and Aeroengine Congress and Exposition, Amsterdam, June 5–9, ASME.

    Google Scholar 

  • Teoh, L.L. (1989), “Electric Arc Furnace Technology: Recent Developments and Future Trends”, Ironmaking and Steelmaking 16 (5), p303–313.

    Google Scholar 

  • Thümmler and R. Oberacker (1993), Introduction to Powder Metallurgy, Institute of Materials, London.

    Google Scholar 

  • Tierney, B. and P. Linehan (Eds.) (1994), Ullman’s Encyclopedia of Industrial Chemistry,VHC, Weinheim, Germany.

    Google Scholar 

  • Tilton, J.E. (Ed.) (1990), World Metal Demand, Resources of the Future, Washington, D.C.

    Google Scholar 

  • Tomassetti, G. (1995), The Steel Industry in Italy: Thin Slab Casting in Cremona, in: Energy Efficiency Utilising High Techology(ed.), World Energy Council, London.

    Google Scholar 

  • Torlet, J.P. (1997), Personal Communication, Research & Development, Cockerill Sambre, Vivegnis, Belgium, 3 November.

    Google Scholar 

  • VAI (1994), “Beam Blank Minimill for Stahlwerk Thueringen”, Strand News 8, p6–7. Verweij (1997), Personal Communication, Hoogovens, IJmuiden, 1 April.

    Google Scholar 

  • Weast, R.C. (Ed.) (1983), CRC Handbook of Chemistry and Physics (64 ed.),CRC, Boca Raton.

    Google Scholar 

  • WEC (1995), “Energy Efficiency Improvement Utilizing High Technology - An Assessment of Energy Use in Industry and Buildings”, World Energy Council, London.

    Google Scholar 

  • Weston, T.R. and M.W. Thompson (1996a), “Bright Future seen for the Romelt Process”, MBM Metals Technology Supplement 308 (1 August), p6–9.

    Google Scholar 

  • Weston, T.R. and M.W. Thompson (1996b), The Romelt Process - Applications in the 21st Century Steel Industry“, ICF Kaiser, Fairfax, Virginia, USA.

    Google Scholar 

  • Worrell, E. (1994), “Potentials for Improved Use of Industrial Energy and Materials”, Thesis, Utrecht University

    Google Scholar 

  • Worrell, E. (1995), “Advanced Technologies and Energy Efficiency in the Iron and Steel Industry in China”, Energy for Sustainable Development 11 (4), p27–40.

    Article  Google Scholar 

  • Worrell, E. and J. de Beer (1991), “Gross Energy Requirements - Partial Report on Steel (Energiekentallen - Deelrapport Staal)”, Castro Consulting Engineer (In Dutch), Amersfoort.

    Google Scholar 

  • Worrell, E., J. de Beer and K. Blok (1993), Energy Conservation in the Iron and Steel Industry, in: Energy Efficiency in Process Technology, P.A. Pilavachi (ed.), Elsevier, Amsterdam.

    Google Scholar 

  • Worrell, E., R.J.J. van Heijningen, J.F.M. de Castro, J.H.O. Hazewinkel, J.G. de Beer, A.P.C. Faaij and K. Vringer (1994), “New gross Energy-requirement figures for materials production”, Energy–The International Journal 19 (6), p627–640.

    Article  Google Scholar 

  • Yemin, L. and X. Zhihong (1996), “Smelting Reduction Process for Iron and Chemicals”, Laboratory of Computer Chemistry, Institute of Chemical Metallurgy, Chinese Academy for Sciences, Peking.

    Google Scholar 

  • Yoshida, K., T. Kobayashi, M. Tanaka and T. Watanabe (1982), “Energy Savings in Continuous Casting”, 4th International Iron and Steel Congress, London, May.

    Google Scholar 

  • Zervas, T., J.T. McMullam and B.C. Williams (1996), “Gas-Based Direct Reduction Processes for Iron and Steel Production”, International Journal of Energy Research 20 (2), p157–185.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

de Beer, J. (2000). Future Technologies for Energy-Efficient Iron and Steel Making. In: Potential for Industrial Energy-Efficiency Improvement in the Long Term. Eco-Efficiency in Industry and Science, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2728-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2728-0_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5444-9

  • Online ISBN: 978-94-017-2728-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics