Skip to main content

Toward Polydiacetylenes as Utile Optical and Electronic Elements

  • Chapter
Polydiacetylenes

Part of the book series: NATO ASI Series ((NSSE,volume 102))

Abstract

Motivations for the study of nonlinear optical phenomena in polydiacetylenes (PDAs) are discussed. Recent progress in the fabrication and characterization of PDA waveguides is summarized along with approaches to the interpretation of the observed nonlinear optical phenomena. Attempts to create a carrier population in PDAs via charge transfer chemistry are reviewed. The implantation of PDAs with 75As ions has been studied by several spectroscopic techniques and converts these insulators into highly conducting materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Hoffmann, T. Hughbanks, M. Kertesz, and P.H. Bird, J. Am. Chem. Soc, 105, 4831 (1983); M.J. Rice, A.R. Bishop, and D.K. Campbell, Phys. Rev. Lett., 51, 2136 (1983); A.T. Balaban, C.C. Rentia, and E. Ciupitu, Rev. Roumaine de Chim. 13, 231 (1968).

    Google Scholar 

  2. A. Karpfen, J. Phys. C., 13, 5673 (1980), and references therein; J.L. Bredas, R.R. Chance, R. Silbey, G. Nicholas, and Ph. Durand, J. Chem. Phys., 75, 255 (1981); J.L. Bredas, R.R. Chance, R.H. Baughman, and R. Silbey, J. Chem. Phys., 76, 3673 (1982).

    Google Scholar 

  3. D.J. Sandman, J. Electronic Materials 10, 173 (1981).

    Article  CAS  Google Scholar 

  4. R.H. Baughman, J.L. Bredas, R.R. Chance, R.O. Elsenbaumer, and L.W. Shacklette, Chem. Rev, 82, 209 (1982).

    Article  CAS  Google Scholar 

  5. K.J. Donovan and E.G. Wilson, Phil. Mag., B44, 9 (1981).

    Article  Google Scholar 

  6. C. Sauteret, J.P. Hermann, R. Frey, F. Pradiere, J. Ducuing, R.H. Baughman, and R.R. Chance, Phys. Rev. Lett. 36, 959 (1976); Optics Commun 18, 55 (1976).

    CAS  Google Scholar 

  7. E. Abraham, C.T. Seaton, and S.D. Smith, Scientific American 248, (2), 85 (1983).

    Article  Google Scholar 

  8. P.W. Smith, The Bell System Technical Journal, 61, 1975 (1982).

    Google Scholar 

  9. N. Bloembergen, Science, 216, 1057 (1982).

    Article  CAS  Google Scholar 

  10. Nonlinear Optical Properties of Organic and Polymeric Materials,“ D. J. Williams, ed., American Chemical Society Symposium Series 233, 1983.

    Google Scholar 

  11. A.F. Garito, C.C. Teng, K.Y. Wong, and O. Zammani’ Khamieri, Mol. Cryst. Liq. Cryst 106, 219 (1984); A.F. Garito and K.D. Singer, Laser Focus 80, 59 (1982).

    Google Scholar 

  12. Y.J. Chen and G.M. Carter, Appl. Phys. Lett., 41, 307 (1982).

    Google Scholar 

  13. J.P. Hermann and P.W. Smith, Digest of Technical Papers XIth International Quantum Electronics Conference, Boston, MA, June 23–26, 1980 (IEEE New York, 1980), paper T6, pp. 656–657.

    Google Scholar 

  14. P.W. Smith, private communication to G. M. Carter.

    Google Scholar 

  15. M. Lequime and J.P. Hermann, Chem. Phys., 26, 431 (1977).

    Article  CAS  Google Scholar 

  16. D. Bloor, D.J. Ando, F.H. Preston, and G.C.Stevens, Chem. Phys. Lett. 24, 407 (1974).

    Google Scholar 

  17. D.J. Sandman, G.M. Carter, Y.J. Chen, S.K. Tripathy, and L.A. Samuelson in Proceedings of the 2nd International Workshop on Molecular Electronic Devices, U.S. Naval Research Laboratory, Washington, D.C., April 13–15, 1983, F. Carter, ed., to be published.

    Google Scholar 

  18. G.M. Carter, Y.J. Chen, and S.K. Tripathy in (10), pp. 213–228.

    Google Scholar 

  19. G.M. Carter and Y.J. Chen, Appl. Phys. Lett., 42, 643 (1983).

    Article  CAS  Google Scholar 

  20. G.M. Carter, Y.J. Chen, and S.K. Tripathy, Appl. Phys. Lett., 43, 891 (1983).

    CAS  Google Scholar 

  21. C. Cojan, G.P. Agrawal, and C. Flytzanis, Phys. Rev. B, 15, 909 (1977).

    Article  CAS  Google Scholar 

  22. G.P. Agrawal, C. Cojan, and C. Flytzanis, Phys. Rev. B, 17, 776 (1978).

    Article  CAS  Google Scholar 

  23. D.C. Hanna, M.A. Yuratich and D. Cotter, “Nonlinear Optics of Free Atoms and Molecules,” D.L. MacAdam, ed., Springer-Verlag (New York, 1979 ), p. 61.

    Google Scholar 

  24. B. Reimer and H. Baessler, Chem. Phys. Lett. 55, 315 (1978).

    Google Scholar 

  25. M.L. Shand and R.R. Chance in (10), pp. 187–212.

    Google Scholar 

  26. G. M. Carter, Y. J. Chen, J. Georger, J. Hryneiwicz, M. Rooney, M. F. Rubner, L. A. Samuelson, D. J. Sandman, M. Thakur, and S. Tripathy, Mol. Cryst. Liq. Cryst., 106, 259 (1984).

    Article  CAS  Google Scholar 

  27. F. Kajzar, J. Messier, J. Zyss, and I. Ledoux, Optics Commun., 45, 133 (1983).

    Article  CAS  Google Scholar 

  28. C. Flytzanis in (10), pp. 167–185.

    Google Scholar 

  29. G. Wegner, “Molecular Metals,” W. E. Hatfield, ed., Plenum Press, New York, 1979, p. 209 ff.

    Google Scholar 

  30. M. R. Philpott, Chem. Phys. Lett. 50, 18 (1977).

    Google Scholar 

  31. S. E. Rickert, J. B. Lando, and S. Ching, Mol. Cryst. Liq. Cryst. 93, 307 (1983); S. E. Rickert, J. B. Lando, and S. Ching, in (10), pp. 229–233.

    Google Scholar 

  32. R. R. Chance, R. H. Baughman, H. Mueller, and C. J. Eckhardt, J. Chem. Phys 67, 3616 (1977).

    Article  CAS  Google Scholar 

  33. V. Enkelmann and J. B. Lando, Acta Crystallogr. B34, 2352 (1978).

    Article  Google Scholar 

  34. H. Mueller and C. J. Eckhardt, Mol. Cryst. Liq. Cryst 45, 313 (1978).

    Google Scholar 

  35. J. Havens, W.F. Manders, S. Tripathy, and D.J. Sandman, to be published.

    Google Scholar 

  36. J.R. Havens, M. Thakur, J.B. Lando, and J.L. Koenig, Macromolecules 17, 1071 (1984); G.E. Babbitt and G.N. Patel, Macromolecules 14, 554 (1981).

    Google Scholar 

  37. J.P.C.M. van Dongen, M.J.A. deBie, and R. Steur, Tetrahedron Lett. 1371 (1973).

    Google Scholar 

  38. Z. Berkovitch-Yellin and L. Leiserowitz, Acta Crystallogr., B33, 3657 (1977).

    Article  Google Scholar 

  39. M. Pope and C. E. Swenberg, “Electronic Processes in Organic Crystals,” Oxford University Press, 1982, pp. 673–699.

    Google Scholar 

  40. W. Spannring and H. Baessler, Chem. Phys. Lett., 84, 54 (1981).

    Article  CAS  Google Scholar 

  41. L. Sebastian and G. Weiser, Phys. Rev. Lett., 46, 1156 (1981).

    Article  CAS  Google Scholar 

  42. A. S. Siddiqui, J. Phys. C: Solid State Phys., 15, L263 (1982).

    Article  CAS  Google Scholar 

  43. U. Seiferheld and H. Baessler, Solid State Commun. 47, 391 (1983).

    Article  Google Scholar 

  44. S. Arnold, J. Chem. Phys., 76, 3842 (1982) A.A. Murashov, E.A. Silinsh, and H. Baessler, Chem. Phys. Lett., 93, 148 (1982).

    Google Scholar 

  45. D.J. Sandman, G.P. Hamill, L.A. Samuelson, and B.M. Foxman, Mol. Cryst. Liq. Cryst., 106, 199 (1984).

    CAS  Google Scholar 

  46. E.G. Popova and L.Â. Chetkina, Zh. Strukt, Khim. 20, 665 (1979).

    CAS  Google Scholar 

  47. A.I. Kitaigorodsky, “Molecular Crystals and Molecules,” Academic Press, New York, 1973, Chapter 1, Section A.3.

    Google Scholar 

  48. G. Schleier, Doctoral Dissertation, Faculty of Chemistry and Pharmacy, University of Freiburg, 1980.

    Google Scholar 

  49. K.C. Yee and R.R. Chance, J. Polym. Sci., Polym. Phys. Edit., 16, 431 (1978).

    Article  CAS  Google Scholar 

  50. P. Nielsen, A. J. Epstein, and D.J. Sandman, Solid State Commun. 15, 53 (1974).

    Article  CAS  Google Scholar 

  51. H. Nakanishi, H. Matsuda, and M. Kato, Mol. Cryst. Liq. Cryst. 106, 77 (1984).

    Article  Google Scholar 

  52. S.T. Picraux and W.J. Choyke, eds., “Metastable Materials Formation by Ion Implantation,” North Holland, New York, 1982.

    Google Scholar 

  53. a) J.S. Williams and K.T. Short in (52), pp. 109–115; b) J. R. Gavaler, et al. in (52), pp. 287–293; c) D.C. Weber, et al. in (52), pp. 167–171; d) J.S. Abel, et al., in (52), pp 173–179.

    Google Scholar 

  54. B.S. Elman, D.J. Sandman, M.K. Thakur, M. A. Newkirk, E.F. Kennedy, “Ion Beam Modification of Polydiacetylene Crystals,” presented at the International Conference on Ion Beam Modification of Materials, Cornell University, Ithaca, NY, July 16–20, 1984; B. S. Elman, M. K. Thakur, D. J. Sandman, M. A. Newkirk, and E. F. Kennedy, J. Appl. Phys. submitted; B.S. Elman, D.J. Sandman, and M.A. Newkirk, Appl. Phys. Lett., in press.

    Google Scholar 

  55. U. Seiferheld, H. Baessler, and B. Movaghar, Phys. Rev. Lett. 51, 813 (1983).

    Article  CAS  Google Scholar 

  56. D.N. Batchelder and D. Bloor, J. Phys. C, Solid State Phys. 15, 3005 (1982).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sandman, D.J., Carter, G.M., Chen, Y.J., Elman, B.S., Thakur, M.K., Tripathy, S.K. (1985). Toward Polydiacetylenes as Utile Optical and Electronic Elements. In: Bloor, D., Chance, R.R. (eds) Polydiacetylenes. NATO ASI Series, vol 102. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2713-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2713-6_22

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-8294-7

  • Online ISBN: 978-94-017-2713-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics