Skip to main content

Silicone Materials for Electronic Components and Circuit Protection

  • Chapter
Plastics for Electronics

Abstract

Silicones are synthetic polymers based on a molecular structure of alternating silicon and oxygen atoms with organic groups also attached to all or some of the silicon atoms. Their general formula is [R a SiO(4−a)/2] b where a = 1 to 3 and b≥2. R represents an organic group.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kipping, F. S. and Lloyd, L. L., Organic derivatives of silicon, J. Chem. Soc., 79, 449 (1901).

    Article  Google Scholar 

  2. Alperowicz, N., Dow Corning poised for growth in Europe, Chemical Week, April 3, 1996.

    Google Scholar 

  3. Eaborn, C., Organosilicon Compounds, Butterworth Scientific Publications, London, 1960.

    Google Scholar 

  4. Noll, W., Chemie and Technologie der Silicone, Verlag Chemie, Weinheim, 1960.

    Google Scholar 

  5. Von Hippel, A., Dielectric Materials and Applications, Technology Press of MIT and John Wiley Sons Inc., New York, 1954.

    Google Scholar 

  6. Joint Assessment of Commodity Chemicals No. 26: Linear Polydimethylsiloxanes, ECETOC Brussels, September 1994.

    Google Scholar 

  7. Hilado, C. J., Casey, C. J., Christensen, D. F. and Lipowitz, J., Toxicity of pyrolysis gases from silicone polymers, J. Combustion Toxicology, 5, 130–140, May 1978.

    Google Scholar 

  8. Lynch, W., Handbook of Silicone Rubber Fabrication, Van Nostrand Rheinhold Co., New York, 1978.

    Google Scholar 

  9. France, P. W., Dunn, P. L. and Reeve, M. H., Plastic coating of glass fibres and its influence on strength, Fibre and Integrated Optics, 2, (1979).

    Google Scholar 

  10. Mollie, J.-P., and Paquet, R., Performance of new silicone adhesives and encapsulants at high and low temperature, Proc. IEE Automotive Eighth International Conference, London, 1988.

    Google Scholar 

  11. Kookootsedes, G., and Antonen, R., Selecting protective materials for coating hybrid circuits, Hybrid Circuit Technology, March 1986.

    Google Scholar 

  12. Day, A. G., and Weller, M.G., Flammability testing of printed wiring board material and the effect of the conformal coating, Proc. Internepcon Conference, Brighton, 1980.

    Google Scholar 

  13. Mollie, J.-P., Klebstoffe aus Silicon, Electronik Produktion Pruftechnik, March 1995.

    Google Scholar 

  14. Vanwert, B., One-part thermal cure silicone adhesives, Proc. NEPCON WEST ‘86, California, 1996.

    Google Scholar 

  15. Wilson, S., Thermally conductive adhesives for high thermally stressed assembly, Proc. NEPCON WEST ‘86, California, 1996.

    Google Scholar 

  16. Verhelst, V., Capillary zone electrophoresis determination of ionic impurities in silicone product used for electronic applications, J. Chromatography, Special Issue, International Symposium, Reading, 1996.

    Google Scholar 

  17. Otsuka, K. et al.,The mechanisms that provide corrosion protection for silicone gel encapsulated chips. IEEE Transactions on Components, Hybrids,CHMT-12 (4), December 1987.

    Google Scholar 

  18. Ahlburn, B. T. et al.,Hydrogen silsesquioxane-based flowable oxide as an element in the inter-level dielectric for sub 0.5 micron ULSI circuits, Multilevel Interconnection Conference,Santa Clara, 1995.

    Google Scholar 

  19. Ballance, D. S., Scheibert, K. A. and Tietz, J. V., Low temperature reflow planarisation using a novel spin-on inter-level dielectric, Multilevel Interconnection Conference (VMIC), 1995.

    Google Scholar 

  20. Waeterloos, J. and Meynen, H., Integrating a hydrogen-silsesquioxane spin-on dielectric in a quarter-micron technology, DUMIC, California, February 1997.

    Google Scholar 

  21. Cush, R.J., LSR: the versatile alternative, British Plastics and Rubber, 29–31 (October 1982).

    Google Scholar 

  22. Lipowitz, J., Combustion, Flammability and Fire Hazard Properties of Silicones, Publication NMAB-342, National Academy of Sciences, Washington, DC, 1978.

    Google Scholar 

  23. Weyenberg, D. R., and Lane, T. H., Future Directions for Silicon-based Polymers, American Chemical Society, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mollie, JP. (1999). Silicone Materials for Electronic Components and Circuit Protection. In: Goosey, M. (eds) Plastics for Electronics. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2700-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2700-6_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4018-3

  • Online ISBN: 978-94-017-2700-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics