Skip to main content

New Polymers for Emerging Interconnection Applications

  • Chapter
Plastics for Electronics

Abstract

The principal drivers for the development of new polymers for electronic applications include:

  • device, substrate and system miniaturization impacting operational speed and product weight (e.g. portability),

  • coefficient of thermal expansion (CTE) mismatch of semiconductor and related packaging and interconnecting materials,

  • increase in data signal processing speeds and need for dielectric constant (ε′) and dielectric loss (ε″) reduction,

  • integration of low cost, production efficient, high performance materials and enabling technologies into consumer products,

  • improved product reliability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hirakawa, T. and Kato, C., A new laminate for MCM-L, Proc. ISHM’93, p. 199, 1993.

    Google Scholar 

  2. Homan, G. E. and Powell, D. J., Fabricating PWBs and MCM-Ls with a new nonwoven aramid reinforcement, 7th International SAMPE Electronics Conference, p. 177, 1994.

    Google Scholar 

  3. Haezebaert, G. and Durigon, A., Lower dielectric constant prepreg with standard FR4 processing for high performance digital PWBs, Printed Circuit Europe, July—August, 23, 1996, and Snyder, W. W., A new low-dielectric material for PCBs, Printed Circuit Fabrication, March, 41, 1990.

    Google Scholar 

  4. Novak, A., Lindahl, T. and Hellgren, E., Study of different techniques for building MCM-L substrates, Proceedings PCWC VII, paper 20–1/7, Basel 1996, and Aday, J., Tessier, T., Crews, H. and Rasul, J., A comparative analysis of high density PWB technologies, IMAPS Journal, 19 (4), 404, 1996.

    Google Scholar 

  5. Perec, V. and Tomazos, D., in Comprehensive Polymer Science, ed. G. Allen, First Supplement, pp. 300 and 701, 1992, and Weiss, R. A. and Ober, C. K., Liquid crystalline polymers, ACS Symposium Series, No. 435, 1990.

    Google Scholar 

  6. Editorial, High Performance Plastics,pp. 2 and 6, January, 1996.

    Google Scholar 

  7. Jayaraj, K., Noll, T. E. and Blizard, K., Controlled thermal expansion PWBs based on liquid crystal polymer dielectrics, Circuit World, 22 (2), 1996, and Noll, T. E., Jayaraj, K., Farrel, B. and Larmouth, R., Low cost. Near hermetic MCM based on liquid crystal polymer dielectrics, IMAPS Journal, 19 (4), 469, 1996.

    Google Scholar 

  8. Lisignea, R., Piche. J. and Mathisen, R., Ordered polymers for interconnection substrates, ACS Symp. Series, No. 407, 446, 1989.

    Article  Google Scholar 

  9. Adema, G., Hwang, L., Rinne, G. and Turlik, I., Passivation schemes for Cu/ polymer thin film interconnections used in multichip modules, IEEE Trans. CHMT, 16, 53, 1993.

    Google Scholar 

  10. Ferger, C., Selection criteria for MCM dielectrics, in MCM Technologies and Alternatives, eds D. Doane, and P. Franzone, Van Nostrand Reinhold, 1993, p. 311.

    Google Scholar 

  11. Ferger, C. et al.,Polyimides: Materials, Chemistry and Characterization, Elsevier, 1989.

    Google Scholar 

  12. Mittal, K. L. (ed.), Polyimides, Plenum Press, 1984.

    Google Scholar 

  13. Deutsch, A. et al.,Measurement of Dielectric Anisotropy of BPDA-PDA PI in Multilayer Thin Film Packages, IEEE Trans. CHMT,17, 486, 1994.

    Google Scholar 

  14. Volksen, W., Yoon, D. Y. and Hendrick, J., Polyamic alkyl esters: Versatile PI precursors for improved dielectric coatings, Proc. ECTC, 572, 1991.

    Google Scholar 

  15. Rubner, R., Siemans Forsch-u. Entwicki-Ber., 5, 232, 1976.

    Google Scholar 

  16. Hiramoto, H., Photosensitive polyimides Proc. MRS, Advanced Electronic Packaging Materials, 167, 87, 1990.

    Google Scholar 

  17. Kirchoff, R. and Bruza, K., Benzocyclobutenes in polymer synthesis, Progress in Polymer Science, 18, 85, 1993.

    Article  Google Scholar 

  18. Garrou, P. et al.,Rapid thermal curing of BCB dielectric, IEEE Trans. CHMT,16 46, 1993.

    Google Scholar 

  19. Moyer, E. S. et al.,Photodefinable BCB formulations for microelectronics applications, part II, Proc. TEPS,37, 1992.

    Google Scholar 

  20. Strandjord, A., Ida, Y., Rogers, B., Garrou, P., Cummings, S. and Kisting, S., Photo BCB, MCM-D processing and area array assembly, Int. J. Microcircuits and Microelectronic Packaging, 19, 260, 1996.

    Google Scholar 

  21. Garrou, P. E., Polymer dielectrics for multichip module packaging, Proc. IEEE, 80, 1942, 1992.

    Article  Google Scholar 

  22. Beyne, E., Van Hoff, R., Pieters, F., Lenaerts, S. and Achen, A., The use of BCB and photo BCB dielectric in MCM-D for high speed digital and microwave applications, Proc. Int Conf. MCMs, 513, Denver, 1995.

    Google Scholar 

  23. Wilson, A., Use of polyimides in VLSI fabrication, in Polyimides, ed. K.L. Mitel, Plenum Press, 715, 1984.

    Google Scholar 

  24. The National Technology Roadmap for Semiconductors, Semiconductor Industry Association 1994.

    Google Scholar 

  25. Samuelson, G., Polyimide for multilevel VLSI, in Polymers for Electronic Applications, ed. Feit and Wilkins, Amer. Chem. Soc. Symp. Series, 184, 93, 1982.

    Google Scholar 

  26. Bothra, S., Rogers, B., Kellam, M. and Osborn, C., Analysis of the effects of scaling on interconnect delay in ULSI circuits, IEEE Trans. Electron Devices, 40, 591, 1993.

    Article  Google Scholar 

  27. Gardner, D. et al.,Encapsulated copper interconnection devices using sidewall barriers, Proc. VMIC Conf.,99, 1991.

    Google Scholar 

  28. Kaanta, C. et al.,Dual Damascene: a ULSI wiring technology, Proc. VMIC,144, 1991.

    Google Scholar 

  29. Roehl, S. et al.,High density Damascene wiring and borderless contacts for 64 M DRAM, Proc. VMIC,22, 1992.

    Google Scholar 

  30. Hayashi, Y. et al.,A new two step metal-CMP technique for high performance multilevel interconnects featured by Al and Cu in low e, organic film, IEEE 1995 Symposium on VLSI Technology — Digest of Technical Papers,88, 1995.

    Google Scholar 

  31. Case, C., Kornblit, A. and Sapjeta, J., Evaluation of Cyclotene 5021 as a low dielectric constant ILD, Proc. VMIC Conf, 63, 1996.

    Google Scholar 

  32. Finchem, E., Mickanin, W. and Rosemeyer, C., A multilevel high density interconnect process designed and developed for manufacturability, US Conf. On GaAs Manufacturing Technology (Mantech) Proc., 163, 1994.

    Google Scholar 

  33. Prasad, K. and Rerfecto, E., Multilevel thin film packaging: applications and processes for high performance systems, IEEE Trans CHMT, Part B, 17, 38, 1994.

    Google Scholar 

  34. Garrou, P., MCM-D: thin film materials, processes and applications; Tummala, R., Garrou, P., Knickerbocker, J. and Kumar, A., MCM-C materials, processes and applications; Tessier, T. and Garrou, P., MCM-L: materials, processes and applications, in Multichip Module Handbook, ed. P. Garrou and I. Turlik McGraw Hill, 1997, in press.

    Google Scholar 

  35. Tummala, R., Potts, H. and Ahmed, S., Packaging technology for IBM’s latest mainframe computers (S/390/ES9000), Proc. ECTC, 682, 1991.

    Google Scholar 

  36. Akihiro, D., Toshihiko, W. and Hideki, N., Packaging technology for the NEC SX-3/SX-X supercomputer, Proc. ECTC, 525, 1990.

    Google Scholar 

  37. Inoue, T., Matsuyama, H., Matsuzaki, E., Narizuka, Y., Ishino, M., Tanaka, M. and Takenake, T., Microcarrier for LSI chip used in the HITAC M-880 processor group, IEEE Trans. CHMT, 15, 7, 1992.

    Google Scholar 

  38. Abbasi, S., The technology and manufacture of the VAX 9000 multichip unit in MCM Technology: the Basics, ed. Doane and Franzione, Van Nostrand Reinhold, 1993.

    Google Scholar 

  39. Hagge, J., State of the art MCMs for Avionics, IEEE Trans. CHMT, 15, 29, 1992.

    Google Scholar 

  40. Mis, D., Rinne, G., Deane, P. and Adema, G., Flip chip production experience, Proc. ISHM, 291, 1996.

    Google Scholar 

  41. Simon, J., Topper, M., Reichl, H. and Chimel, G., A comparison of flip chip technology with chip size packages, Proc. IEPS, 665, 1995.

    Google Scholar 

  42. Robertsson, M., Engberg, K., Eriksen, P., Hesselboom, H., Niburg, M. and Palmkog, G., Optical interconnects in packaging for telecom applications, Proc. 10th European Microelectronics Conf., 581, 1995.

    Google Scholar 

  43. Palmkog, G., Arvidsson, G., Eriksen, P., Gustafsson, G., Hagel, O., Hammar, J. and Henriksson, P., Low cost single mode optical passive coupler devices with an MT-interface based on polymeric waveguides in BCB, in press.

    Google Scholar 

  44. Bristow, J. et al.,Optical polymer waveguide interconnect technology, Proc. ISHM,138, 1996.

    Google Scholar 

  45. Liu, Y. et al.,Optoelectronic packaging and polymer waveguides for MCM and board level optical interconnect applications, Proc. 45th ECTC,Las Vegas, 185, 1995.

    Google Scholar 

  46. O’Mara, W., Active matrix flat panel displays, Solid State Technology, 34, (Dec), 65, 1991.

    Google Scholar 

  47. Latham, W., Hawley, D., Color filters from dyed polyimides, Solid State Technology, 31, (May), 223, 1988.

    Article  Google Scholar 

  48. Harsanyi, G., Polymeric films in microelectronic sensors, Proc. ISHM, 191, 1996.

    Google Scholar 

  49. Allen, M., PI processes for the fabrication of thick electroplated structures, Proc. 7th Int. Conf. On Solid State Sensors and Actuators, 60, 1993

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Everett, J., Garrou, P., Dalman, D. (1999). New Polymers for Emerging Interconnection Applications. In: Goosey, M. (eds) Plastics for Electronics. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2700-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2700-6_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4018-3

  • Online ISBN: 978-94-017-2700-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics