Skip to main content

Choice of Crop Species and Development of Transgenic Product Lines

  • Chapter
Plants as Factories for Protein Production

Abstract

The choice of a crop species for use as a manufacturing vehicle for heterologous protein production is a serious one because it will affect every aspect of product development from the construction of transformation vectors to the downstream processing steps necessary for purification. The use of some crops (e.g. soybeans and canota is further limited by patent restrictions on commercial transformation. Transformation of any crop species will generate an enormous amount of variation in recombinant protein expression and agronomic characteristics that must be managed by careful selection and breeding. For some crops this may be a fairly simple matter, whereas for others it may require years to obtain a finished product line. The breeding of transgenic crops has its own unique challenges and should be approached differently than standard plant breeding because the objectives may be very different depending on the product and target market.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albert H, Dale E, Lee E, Ow D. (1995) Site-specific integration of DNA into wild-type and mutant lox sites placed in the plant genome. Plant Journal 7: 649–659

    Article  PubMed  CAS  Google Scholar 

  • Allen G, Spiker S, Thompson W. (2000) Use of matrix attachment regions ( MARS) to minimize transgene silencing. Plant Mol Biol 43: 361–376

    Google Scholar 

  • Cornai L. (2000) Genetic and epigenetic interactions in allopolyploid plants. Plant Mol Biol 43: 387–399

    Google Scholar 

  • Conrad U, Fiedler U. (1998) Compartment-specific accumulation of recombinant immunoglobulins in plant cells:an essential tool for antibody production and immunomodulation of physiological functions and pathogen activity. Plant Mol Biol 38: 101–109

    Article  PubMed  CAS  Google Scholar 

  • Cramer C, Boothe J, Olshi K. (1999) Transgenic plants for therapeutic proteins: linking upstream and downstream strategies. In J Hammond, P McGarvey, V Yusibov, eds Plant Biotechnology: New products and applications. Springer-Verlag, Berlin, pp 95118

    Google Scholar 

  • Dehio C, Schell J. (1994) Identification of plant genetic loci involved in a posttranscriptional mechanism for meiotically reversible transgene silencing. Proceedings of the National Academy of Sciences USA 91: 5538–5542

    Article  CAS  Google Scholar 

  • DeNeve M, DeBuck S, DeWilde C, Van Houdt H, Strobbe I, Jacobs A, Van Montagu M, Depicker A. (1999) Gene silencing results in instability of antibody production in transgenic plants. Mol Gen Genet 260: 582–592

    Article  CAS  Google Scholar 

  • DeNeve M, Van Houdt H, Bruyns A-M, Van Montagu M, Depicker A. (1998) Screening for transgenic lines with stable and suitable accumulation levels of a hcterologous protein. Methods in Biotechnology 3: 203–227

    Article  CAS  Google Scholar 

  • DeWilde C, Van Houdt H, DeBuck S, Angenon G, DeJaeger G, Depicker A. (2000) Plants as bioreactors for protein production: avoiding the problem of transgene silencing. Plant Mol Biol 43: 347–359

    Article  CAS  Google Scholar 

  • Elmayan T, Vaucheret H. (1996) Expression of single copies of a strongly expressed 35S transgene can be silenced post-transcriptionally. Plant Journal 9: 787–797

    Article  CAS  Google Scholar 

  • Finnegan J, McElroy D. (1996) Transgene stability. In M Owen, J Pen, eds Transgenic plants: A production system for industrial and pharmaceutical proteins. J Wiley and Sons, New York, pp 169–186

    Google Scholar 

  • Giddings G, Allison G, Brooks D, Carter A. (2000) Transgenic plants as factories for biopharmaceuticals. Nature Biotechnology 18: 1151–1155

    Article  PubMed  CAS  Google Scholar 

  • Grant S. (1999) Dissecting the mechanisms of posttranscriptional gene silencing: divide and conquer. Cell 96: 303–306

    Article  PubMed  CAS  Google Scholar 

  • Hanson B, Engler D, Moy Y, Newman B, Ralston E. Gutterson N. (1999) A simple method to enrich an Agrobacterium-transformed population for plants containing only T-DNA sequences. Plant Journal 19: 727–734

    CAS  Google Scholar 

  • Hovenkamp-Hermelink J, Jacobsen E, Pijnacker L, deVries J, Witholt B, Feenstra W. (1988) Cytological studies on adventitious shoots and minitubers of a monoploid potato clone. Euphytica 39: 213–219

    Article  Google Scholar 

  • Iglesias V, Moscone E, Papp I, Neuhuber F, Michalowski S, Phelan T, Spiker S, Matzke M, Matzke A. (1997) Molecular and cytogenetic analyses of stably and unstably expressed transgene loci in tobacco. Plant Cell 9: 1251–1264

    PubMed  CAS  Google Scholar 

  • Kooter J, Matzke M, Meyer P. (1999) Listening to the silent genes: Transgene silencing, gene regulation and pathogen control. Trends in Plant Science 4: 340–347

    Google Scholar 

  • Kunz C, Schob H, Stam M. Kooter J, Meins F. (1996) Developmentally regulated silencing and reactivation of tobacco chitinase transgene expression. Plant Journal 10: 437–450

    CAS  Google Scholar 

  • Kusnadi A, Hood E, Witcher D, Howard J, Nikolov Z. (1998) Production and purification of two recombinant proteins from transgenic corn. Biotechnol Prog 14: 149–155

    Article  PubMed  CAS  Google Scholar 

  • Kuvshinov V, Koivu K, Kanerva A, Pehu E. (2001) Molecular control of transgene escape from genetically modified plants. Plant Science 160: 517–522

    Article  PubMed  CAS  Google Scholar 

  • Linn F, Heidmann I, Saedler H, Meyer P. (1990) Epigenetic changes in the expression of the maize Al gene in Petunia hybrida: role of numbers of integrated gene copies and state of methylation. Mol Gen Genet 222: 329–336

    Article  PubMed  CAS  Google Scholar 

  • Matzke M, Matzke A. (1991) Differential inactivation and methylation of a transgene in plants by two suppressor loci containing homologous sequences. Plant Mol Biol 16: 821–830

    Article  PubMed  CAS  Google Scholar 

  • Matzke M, Matzke A. (1995) How and why do plants inactivate homologous transgenes? Plant Physiology 107: 679–685

    PubMed  CAS  Google Scholar 

  • Matzke M, Mette M, Matzke A. (2000) Transgene silencing by the host genome defense: implications for the evolution of epigenetic control mechanisms in plants and vertebrates. Plant Mol Bio143: 401–415

    Google Scholar 

  • Meyer P. (1998) Stabilities and instabilities in transgene expression. In K Lindsey, ed Transgenic Plant Research. Harwood Academic Publishers, Amsterdam, pp 263–275

    Google Scholar 

  • Meyer P, Linn F, Heidmann I. (1992) Endogenous and environmental factors influence 35S promoter methylation of a maize Al gene construct in transgenic petunia and its colour phenotype. Mol Gen Genet 231: 352

    Article  Google Scholar 

  • Mittelsten Scheid O, Jakovleva L, Afsar K, Maluszynska J, Paszkowski J. (1996) A change of ploidy can modify epigenetic silencing. Proceedings of the National Academy of Sciences USA 93: 7114–7119

    Article  Google Scholar 

  • Palauqui J-C, Vaucheret H. (1995) Field trial analysis of nitrate reductase cosuppression: a comparative study of 38 combinations of transgene loci. Plant Mol Biol 29: 149–159

    Article  PubMed  CAS  Google Scholar 

  • Park Y-D, Papp I, Moscone E, Iglesias V, Vaucheret H, Matzke A, Matzke M. (1996) Gene silencing mediated by promoter homology occurs at the level of transcription and results in meiotically heritable alterations in methylation and gene activity. Plant Journal 9: 183–194

    Article  PubMed  CAS  Google Scholar 

  • Pawlowski W, Torbert K, Rines H, Somers D. (1998) Irregular patterns of transgene silencing in allohexaploid oat. Plant Mol Biol 38: 597–607

    Article  PubMed  CAS  Google Scholar 

  • Que Q, Jorgensen R. (1998) Homology-based control of gene expression patterns in transgenic petunia flowers. Developmental Genetics 22: 100–109

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez R. (1999) Process for protein production in plants. United States Patents 5,888,789, 5,889,189, and 5,994, 628

    Google Scholar 

  • Srivastava V, Anderson O, Ow D. (1999) Single-copy transgenic wheat generated through the resolution of complex integration patterns. Proceedings of the National Academy of Sciences USA 96: 11117–11121

    Article  CAS  Google Scholar 

  • Stevens L, Stoopen G, Elbers I, Molthoff J, Bakker H, Lommen A, Bosch D, Jordi W. (2000) Effect of climate conditions and plant developmental stage on the stability of antibodies expressed in transgenic tobacco. Plant Physiology 124: 173–182

    Article  PubMed  CAS  Google Scholar 

  • Stoger E, Vaquero C, Torres E, Sack M, Nicholson L, Drossard J, Williams S, Keen D, Perrin Y, Christou P, Fischer R. (2000) Cereal crops as viable production and storage systems for pharmaceutical scFv antibodies. Plant Mol Biol 42: 583–590

    Article  PubMed  CAS  Google Scholar 

  • Vaucheret H, Beclin C, Elmayan T, Feurerbach F, Gordon C, Morel J-B, Mourrain P, Palauqui J-C, Vernhettes S. (1998a) Transgene-induced gene silencing in plants. Plant Journal 16: 651–659

    Article  PubMed  CAS  Google Scholar 

  • Vaucheret H, Elmayan T, Thierry D, van der Geest A, Hall T, Conner A, Mlynarova L, Nap JP. (1998b) Flank matrix attachment regions ( MARs) from chicken, bean, yeast or tobacco do not prevent homology-dependent trans-silencing in transgenic tobacco plants. Mol Gen Genet 259: 388–392

    Google Scholar 

  • Wassenegger M, Heimes S, Riedel L, Sanger H. (1994) RNA-directed de novo methylation of genomic sequences in plants. Cell 76: 567–576

    Article  PubMed  CAS  Google Scholar 

  • Wolffe A, Matzke M. (1999) Epigenetics: Regulation through repression. Science 286: 481–486

    Google Scholar 

  • Wolters A-M, Visser R. (2000) Gene silencing in potato: allelic differences and effect of ploidy. Plant Mol Biol 43: 377–386

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Delaney, D.E. (2002). Choice of Crop Species and Development of Transgenic Product Lines. In: Hood, E.E., Howard, J.A. (eds) Plants as Factories for Protein Production. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2693-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2693-1_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6113-3

  • Online ISBN: 978-94-017-2693-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics