Skip to main content

Human Pharmaceuticals Produced in Plants

  • Chapter
Plants as Factories for Protein Production

Abstract

Genetically engineered agricultural plants with improved traits (e.g. herbicide and pest resistance) have yielded significant agricultural revenues over the past 5 years. In addition, numerous immunotherapeutic proteins, antibodies and vaccines have been successfully produced using plant “bioreactors”(Arakawa et al., 1998); however, only a limited number have made their way into clinical trials. The most advanced product in human clinical trials is a secretory IgA antibody comprised of four polypeptide chains that inhibits the binding to teeth of Streptococcus mutans, the major causal agent of tooth decay. This chapter will summarize recent work demonstrating the potential of plants to synthesize and assemble complex proteins suitable for human therapeutic use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arakawa T, Chong DK and Langridge WH. 1998. Efficacy of a food plant-based oral cholera toxin B subunit vaccine. Nat. Biotechnol. 16 (3): 292–297.

    Article  PubMed  CAS  Google Scholar 

  • Artsaenko O, Peisker M, zur Nieden U, Fiedler U, Weiler EW, Müntz K and Conrad U. 1995. Expression of a single-chain Fv antibody against abscisic acid creates a wilty phenotype in transgenic tobacco. Plant J., 8: 745–750.

    Article  PubMed  CAS  Google Scholar 

  • Austin S, Bingham ET, Koegel RG, Mathews DE, Shahan MN, Straub RJ and Burgess RR. 1994. An overview of a feasibility study for the production of industrial enzymes in transgenic alfalfa. Ann. N.Y. Acad. Sci., 721: 235–244.

    Article  Google Scholar 

  • Baum TJ, Hiatt A, Parrott WA, Pratt LH and Hussey RS. 1996. Expression in tobacco of a functional monoclonal antibody specific to stylet secretions of the root-knot nematode. Molecular Plant Microbe Interactions, 9: 382–387.

    Article  CAS  Google Scholar 

  • Bednarek SY and Raikhel NV. 1992. Intracellular trafficking of secretory proteins. Plant Mol. Biol., 20: 133–150.

    Article  PubMed  CAS  Google Scholar 

  • Benvenuto E, Ordas RJ, Tavazza R., Ancora G, Biocca S, Cattaneo A and Galeffi P. 1991. “Phytoantibodies”; A general vector for the expression of immunoglobulin domains in transgenic plants. Plant Mol. Biol., 17: 865–874.

    Article  PubMed  CAS  Google Scholar 

  • Bombauer IvS and Becker MR. 1975. In, Joy of Cooking, 38th edition, Bobbs-Merril Co., Inc. (Indianapolis):p 520.

    Google Scholar 

  • Borrebaeck CAK. (ed.) 1995. Antibody Engineering. Oxford University Press. New York, Oxford.

    Google Scholar 

  • Bruyns A-M, de Jaeger G, De Neve M, De Wilde C, Van Montagu M and Depicker A. 1996. Bacterial and plant-produced scFv proteins have similar antigen-binding properties. FEBSLett., 386: 5–10.

    Article  CAS  Google Scholar 

  • Cabanes-Macheteau M, Fitchette-Laine AC, Loutelier-Bourhis C, Lange C, Vine ND, Ma JK, Lerouge P and Faye L. 1999. N-Glycosylation of a mouse IgG expressed in transgenic tobacco plants. Glycobiologv, 9: 365–72.

    Article  CAS  Google Scholar 

  • Casadevall A and Scharff MD. 1994. “Serum therapy” revisited: Animal models of infection and the development of passive antibody therapy. Antimicrob. Agents Chemother., 38:1695–1702.

    Google Scholar 

  • Casadevall A, et al. 1997. Antibody-based therapies for infectious diseases: Renaissance for an abandoned arsenal? Bull. Inst. Pasteur, 95: 247, 1997.

    Google Scholar 

  • Casadevall A and Scharff, MD. 1995. Return to the past: the case for antibody-based therapies in infectious diseases. Clin. Infect. Dis., 21: 150–161.

    Article  PubMed  CAS  Google Scholar 

  • Conrad U and Fiedler U. 1998. Compartment-specific accumulation of recombinant immunoglobulins in plant cells: an essential tool for antibody production and immunomodulation of physiological functions and pathogen activity. Plant Mol. Biol., 38: 101–9.

    Article  PubMed  CAS  Google Scholar 

  • Cramer CL, Weissenbom DL, Oishi KK, Grabau EA, Bennett S, Ponce E, Grabowski GA and Radin DN. 1996. In “Engineering plants for commercial products and applications”, G.B. Collins and R.J. Shepherd, Eds., New York Academy of Sciences, New York, p. 62.

    Google Scholar 

  • de Haard H, Henderikx P and Hoogenboom HRP. 1998. Creating and engineering human antibodies for immunotherapy. Adv. Drug Delivery Rev., 31:5–31.

    Google Scholar 

  • de Neve M, De Buck S, De Wilde C, Van Houdt H, Strobbe I, Jacobs A, Van Montagu and Depicker A. 1999. Gene silencing results in instability of antibody production in transgenic plants. Mol. Gen. Genet., 260: 582–592.

    Article  PubMed  Google Scholar 

  • de Neve M, De Loose M, Jacobs A, Van Houdt H, Kaluza B, Weidle U and Depicker A. 1993. Assembly of an antibody and its derived antibody fragment in Nicotiana and Arabidopsis. Transgenic Research, 2: 227–237.

    Article  Google Scholar 

  • de Wilde C, de Neve M, de Rycke R, Bruyns A.M, de Jaeger G, van Montagu M, Depicker A and Engler G. 1996. Intact antigen-binding MAK33 antibody and Fab fragment accumulate in intercellular spaces of Arabidopsis thaliana. Plant Sci., 114: 233–241.

    Article  Google Scholar 

  • de Wilde C, de Rycke R, TB, de Neve M, van Montagu M, Engler G and Depicker A. 1998. Accumulation pattern of IgG antibodies and Fab fragments in transgenic Arabidopsis

    Google Scholar 

  • thaliana plants. Plant Cell Physiology,39:639–646.

    Google Scholar 

  • Dieryck W, Pagnier J, Poyart C, Marden MC, Gruber V, Bournat P, Baudino S and Mero B. 1997. Human haemoglobin from transgenic tobacco. Nature 386, 29–30.

    Article  PubMed  CAS  Google Scholar 

  • During K, Hippe S, Kreuzaler F and Schell J. 1990. Synthesis and self-assembly of a functional monoclonal antibody in transgenic Nicotiana tahacum. Plant Mol. Biol., 15: 281–293.

    Article  CAS  Google Scholar 

  • Fecker LF, Kaufmann A. Commandeur U., Commandeur J., Koenig R. and Burgermeister W. 1996. Expression of single-chain antibody fragments (scFv) specific for beet necrotic yellow vein virus coat protein or 25 kDa protein in Escherichia coli and Nicotiana benthamiana. Plant Mol. Biol., 32: 979–986.

    PubMed  CAS  Google Scholar 

  • Fecker LF, Koenig R and Obermeier C. 1997. Nicotiana benthamiana plants expressing beet necrotic yellow vein virus (BNYVV) coat protein-specific scFv are partially protected against the establishment of the virus in the early stages of infection and its pathogenic effects in the late stages of infection. Archives of Virology, 142: 18571863.

    Google Scholar 

  • Fiedler U and Conrad U. 1995. High-level production and long-term storage of engineered antibodies in transgenic tobacco seeds. Bio/Technol., 13: 1090–1093.

    Article  CAS  Google Scholar 

  • Fiedler U, Phillips J, Artsaenko O and Conrad U. 1997. Optimization of scFv antibody production in transgenic plants. Immunotechnology, 3: 205–216.

    Article  PubMed  CAS  Google Scholar 

  • Firek S, Draper J, Owen MRL, Gandecha A, Cockburn B, and Whitelam GC. 1993. Secretion of a functional single-chain Fv protein in transgenic tobacco plants and cell suspension cultures. Plant Mol. Biol., 23: 861–870.

    Article  PubMed  CAS  Google Scholar 

  • Fischer R, Liao Y-C and Drossard J. 1999. Affinity purification of a TMV-specific recombinant full-size antibody from a transgenic tobacco suspension culture. J. Immunol. Methods, 226: 1–10.

    Article  PubMed  CAS  Google Scholar 

  • Fischer R, Liao Y-C, Hoffman K, Schilberg S and Emans N. 1999a. Molecular farming of recombinant antibodies in plants. Biol. Chen., 380: 825–839.

    CAS  Google Scholar 

  • Fischer R, Schumann D, Zimmerman S, Drossard J, Sack M and Schillberg S. 1999b. Expression and characterization of bispecific single chain Fv fragments produced in transgenic plants. Eur. J. Biochem., 262: 810–816.

    Article  PubMed  CAS  Google Scholar 

  • Fotisch K, Altmann F, Haustein D and Vieths S. 1999. Involvement of carbohydrate epitopes in the IgE response of celery-allergic patients. Int. Arch. Allergy Immunol., 120 (1): 3042.

    Google Scholar 

  • Fraley RT, Rogers SG, Horsch RB, Sanders PR, Flick JS, Adams SP, Bittner ML, Brand LA, Fink CL, Fry JS, Galluppi GR, Goldberg SB and Hoffmann NL, Woo S.C. 1983. Expression of bacterial genes in plant cells. Proc. Natl. Acad. Sci. USA 80: 48034807.

    Google Scholar 

  • Franconi R, Roggero P, Pirazzi P, Arias FJ, Desiderio A, Bitti O, Pashkoulov D, Mattei B, Bracci L, Masenga V, Milne RG and Benvenuto E. 1999. Functional expression in

    Google Scholar 

  • bacteria and plants of an scFv antibody fragment against tospoviruses. Inununotechnology,4:189–201.

    Google Scholar 

  • Ganz PR, Dudani AK, Tackaberry ES, Sardana R, Sauder C, Cheng X and Altosaar I. 1996. In “Transgenic plants: a production system for industrial and pharmaceutical proteins”. M.R.L. Owen and J. Pen, Eds., Wiley, Chichester, p 281.

    Google Scholar 

  • Garcia-Casado G, Sanchez-Monge R, Chrispeels MJ, Armentia A, Salcedo G and Gomez L. 1996. Role of complex asparagine-linked glycans in the allergenicity of plant glycoproteins. Glycobiology. 4: 471–477.

    Article  Google Scholar 

  • Gavilondo JV and Larrick JW. 2000. Antibody engineering at the Millenium. BioTechniques.

    Google Scholar 

  • Gegenheimer P. 1990. Preparation of Extracts from Plants. Chap 14. In, Methods Enzym., 182: 174–193.

    Google Scholar 

  • Grill LK. 1997. In “IBC’s 3rd Annual International Symposium on Producing the Next Generation of Therapeutics: Exploiting Transgenic Technologies”, West Palm Beach, 5–6 Feb.

    Google Scholar 

  • Gruber V and Theisen M. 2000. Genetically Modified Crops as a Source for Pharmaceuticals. Ann. Reports in Medicinal Chemistry 35, chapter 31, pp 357–363.

    Google Scholar 

  • Haq TA, Mason HS, Clements JD and Arntzen CJ. 1995. Oral immunization with a recombinant bacterial antigen produced in transgenic plants. Science, 268: 714–716.

    Article  PubMed  CAS  Google Scholar 

  • Hein M, Tang Y, McLeod DA, Janda KD and Hiatt AC. 1991. Evaluation of Immunoglobulins from plant cells. Biotechnology Progress, 7: 455–461.

    Article  PubMed  CAS  Google Scholar 

  • Hein MB, Yeo TC, Wang F and Sturtevant A. 1996. In “Engineering plants for commercial products and applications”, G.B. Collins and R.J. Shepherd, Eds., New York Academy of Sciences, New York, p 50.

    Google Scholar 

  • Hiatt A. 1990. Antibodies produced in plants. Nature, 344: 469–470.

    Article  PubMed  CAS  Google Scholar 

  • Hiatt A. 1991. Monoclonal antibodies, hybridoma technology and heterologous production systems. Current Opinion in Immunology, 3: 229–232.

    Article  PubMed  CAS  Google Scholar 

  • Hiatt A, Cafferkey R and Bowdish K. 1989. Production of antibodies in transgenic plants. Nature, 342: 76–78.

    Article  PubMed  CAS  Google Scholar 

  • Hiatt A and Ma J. 1993. Characterization and applications of antibodies produced in plants. International Review of Immunology, 10:139–152.

    Google Scholar 

  • Hiatt A and Ma JK-C. 1992. Monoclonal antibody engineering in plants. FEBS Lett., 307: 7175.

    Article  Google Scholar 

  • Hiatt A, Tang Y, Weiser W and Hein MB. 1992. Assembly of antibodies and mutagenized variants in transgenic plants and plant cell cultures. Genetic Engineering, 14: 49–64.

    Article  PubMed  CAS  Google Scholar 

  • Higo K, Saito Y and Higo H. 1993. Expression of a chemically synthesized gene for human

    Google Scholar 

  • epidermal growth factor under the control of cauliflower mosaic virus 35S promoter in transgenic tobacco. Biosci. Biotechnol. Biochem. 57, 1477–1481.

    Google Scholar 

  • Hood EE and Jilka JM. 1999. Plant-based production of xenogenic proteins. Curr. Opin. Biotechnol., 10: 382–386.

    Article  PubMed  CAS  Google Scholar 

  • Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG and Fraley RT. 1985. A simple and general method for transferring genes into plants. Science, 227: 1229–1231.

    Article  CAS  Google Scholar 

  • Horvath H, Huang J, Wong O, Kohl E, Okita T, Kannangara LG and von Wettstein D. 2000. The production of recombinant proteins in transgenic barley grains. Proc. Natl. Acad. Sci. USA 97: 1914–1919.

    Article  PubMed  CAS  Google Scholar 

  • Kapusta J, Modelska A, Figlerowicz M, Pniewski T, Letellier M, Lisowa O, Yusibov V, Koprowski H, Plucienniczak A and Legocki AB. 1999. A plant-derived edible vaccine against hepatitis B virus. FASEB J., 13: 1796–1799.

    PubMed  CAS  Google Scholar 

  • Khoudi H, Laberge S, Ferullo JM, Bazin R, Darveau A, Castonguay Y, Allard G, Lemieux R and Vezina LP. 1999. Production of a diagnostic monoclonal antibody in perennial alfalfa plants. Biotechnol. Bioeng., 20: 135–143.

    Article  Google Scholar 

  • Kusnadi Ann R, Nikolov Z and Howard John A. 1997. Production of Recombinant Proteins in Transgenic Plants: Practical Considerations. Biotechnol. Bioengineer., 56: 473–484.

    Article  Google Scholar 

  • Kusnadi AR, Evangelista RL, Hood EE, Howard JA and Nikolov ZL. 1998. Processing of transgenic corn seed and its effect on the recovery of recombinant betaglucuronidase. Biotechnol. Bioeng. Oct 5;60(1): 44–52.

    Google Scholar 

  • Kusnadi AR, Hood EE, Witcher DR, Howard JA and Nikolov ZL. 1998. Production and purification of two recombinant proteins from transgenic corn.: Biotechnol. Prog. Jan-Feb; 14 (1): 149–155.

    CAS  Google Scholar 

  • Kusnadi, A. et al. 1997. Recovery of recombinant beta-glucuronidase from transgenic corn. In: L.E. Erickson (ed.), The proceedings of the 26th annual Biochemical Engineering Symposiums (pp. 143–148 ), Kansas State University, Manhattan, KS.

    Google Scholar 

  • Larrick JW, Yu L, Chen J, Jaiswal S and Wycoff K. 1998. Production of antibodies in transgenic plants. Research Immunology, 149: 603–608.

    Article  CAS  Google Scholar 

  • Lehner T, Caldwell J and Smith R. 1985. Local passive immunization by monoclonal antibodies against streptococcal antigen 1/H in the prevention of dental caries. Infection and Immunity, 50: 796.

    PubMed  CAS  Google Scholar 

  • Lehner T, Challaombe SJ and Caldwell J. 1975. Immunological and bacteriological basis for vaccination against dental caries in rhesus monkeys. Nature, 254: 517.

    Article  PubMed  CAS  Google Scholar 

  • Leiter H, Mucha J, Staudacher E, Grimm R, Glossl J, Altmann F. 1999. Purification, cDNA cloning, and expression of GDP-L-Fuc:Asn-linked GlcNAcalphal,3fucosyltransferase from mung beans. J. Biol. Chem. Jul 30;274(31): 21830–21839.

    Google Scholar 

  • Loomis W.D. 1974. Overcoming problems of Phenolics and Quinones in the Isolation of Plant

    Google Scholar 

  • Enzymes and Organelles. Chap. 54. In: Methods Enzym.,31 (PtA):528–544.

    Google Scholar 

  • Ma JK-C, Hunjan M, Smith R and Lehner, T. 1989. Specificity of monoclonal antibodies in local passive immunization against Streptococcus mutans. Clin. Exp. Immunol., 77: 331–337.

    CAS  Google Scholar 

  • Ma JK-C and Lehner T. 1990. Prevention of colonization of Streptococcus mutons by topical application of monoclonal antibodies in human subjects. Archs. Oral Biol., 35: 115S - 122S.

    Article  Google Scholar 

  • Ma JK-C, Smith R and Lehner, T. 1987. Use of monoclonal antibodies in local passive immunization to prevent colonization of human teeth by Streptococcus mutans. Infection and Immunity, 55: 1274–1278.

    CAS  Google Scholar 

  • Ma SW, Zhao DL, Yin ZQ, Mukherjee R, Singh B, Qin HY, Stiller CR and Jevnikar AM. 1997. Transgenic plants expressing autoantigens fed to mice to induce oral immune tolerance. Nat. Med. 3: 793–796.

    CAS  Google Scholar 

  • Ma J, Hikmat B, Wycoff K, Vine N, Chargelegue D, Yu L, Hein M and Lehner T. 1998. Characterization of a recombinant plant monoclonal secretory antibody and preventive immunotherapy in humans. Nat. Med., 4: 601–606.

    Article  PubMed  CAS  Google Scholar 

  • Ma J.K, Hiatt A, Hein M, Vine ND, Wang F, Stabila P, van Dolleweerd C, Mostov K and Lehner T. 1995. Generation and assembly of secretory antibodies in plants. Science, 268: 716–719.

    Article  PubMed  CAS  Google Scholar 

  • Ma JK-C, Lehner T, Stabilia P, Fox C.1 and Hiatt A. 1994. Assembly of monoclonal antibodies with IgG1 and IgA heavy chain domains in transgenic tobacco plants. Eur. J. Immunol., 24: 131–138.

    CAS  Google Scholar 

  • Ma S, Zhao D, Yin A, Mukherjee R, Singh B, Qin H, Stiller CR and Jevnikar A.M. 1997. Nat. Med. 3, 793–796.

    Article  PubMed  CAS  Google Scholar 

  • Mari A, Iacovacci P, Afferni C, Barletta B, Tinghino R, Di Felice G and Pini C. 1999. Specific IgE to cross-reactive carbohydrate determinants strongly affects the in vitro diagnosis of allergic diseases. J. Allergy Clin. Immunol., 103: 1005–1011.

    Article  PubMed  CAS  Google Scholar 

  • Mason H.S, Ball JM, Shi JJ, Jiang X, Estes MK and Arntzen CJ. 1996. Expression of Norwalk virus capsid protein in transgenic tobacco and its oral immunogenicity in mice. Proc. Natl. Acad. Sci. USA 93: 5335–5340.

    Article  PubMed  CAS  Google Scholar 

  • Mason HS, Lam DM and Arntzen CJ. 1992. Expression of hepatitis B surface antigen in transgenic plants. Proc. Natl. Acad. Sei. USA, 89: 11745–11749.

    Article  CAS  Google Scholar 

  • Mason HS, Haq TA, Clements JD and Arntzen CJ. 1998. Edible vaccine protects mice against Escherichia coli heat-labile enterotoxin (LT): potatoes expressing a synthetic LT-B gene. Vaccine 16: 1336–1343.

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto S, lkura K, Ueda M and Sasaki R. 1995. Characterization of a human glycoprotein (erythropoietin) produced in cultured tobacco cells. Plant Mol. Biol. 27, 1163–1172.

    Article  PubMed  CAS  Google Scholar 

  • McCormick AA, Kumagai MH, Hanley K, Turpen TH, Hakim I, Grill LK, Tuse D, Levy S and Levy R. 1999. Rapid production of specific vaccines for lymphoma by expression of the tumor-derived single-chain Fv epitopes in tobacco plants. Proc. Natl. Acad. Sci. USA, 96: 703–708.

    Article  PubMed  CAS  Google Scholar 

  • Owen M, Gandecha A, Cockburn B and Whitelam G. 1992. Synthesis of a functional anti-phytochrome single-chain Fv protein in transgenic tobacco. BioTechnol., 10: 790–794.

    Article  CAS  Google Scholar 

  • Petridis D, Sapidou E and Calandranis J. 1995. Computer-aided process analysis and economic evaluation for biosynthetic human insulin production — a study case. Biotechnol. Bioeng., 48, 529–541.

    Article  Google Scholar 

  • Phillips J, Artsaenko O, Fiedler U, Horstmann C, Mock HP, Muntz K and Conrad U. 1997. Seed-specific immunomodulation of abscisic acid activity induces a developmental switch. EMBO J., 16: 4489–4496.

    Article  PubMed  CAS  Google Scholar 

  • Pollock DP, Kutzko JP, Birck-Wilson E, Williams JL, Echelard Y and Meade HM. 1999. Transgenic milk as a method for the production of recombinant antibodies. J. Immunol.. Methods, 231: 147–157.

    Article  PubMed  CAS  Google Scholar 

  • Rosso M-N, Schouten A, Roosien J, Borst-Vrenssen T, Hussey RS, Gommers FJ, Bakker J, Schots A and Abad P. 1996. Expression and functional characterization of a single chain FV antibody directed against secretions involved in plant nematode infection process. Biochem. Biophys. Res. Commun., 220: 255–263.

    Article  PubMed  CAS  Google Scholar 

  • Ruggiero F, Exposito J-Y, Bournat P, Gruber V, Perret S, Comte J, Olagnier B, Garrone R and Theisen M. 2000. Triple helix assembly and processing of human collagen produced in transgenic plants. FEBS Lett., 469, 132–136.

    Article  PubMed  CAS  Google Scholar 

  • Russell DA. 1999. Feasibility of antibody production in plants for human therapeutic use. Curr. Top. Microbiol. Immunol., 236: 119–137.

    Google Scholar 

  • Salmon V, Legrand D, Slomianny MC, El Yazidi L Spik G, Gruber V, Bournat P, Olagnier B, Mison D, Theisen M and Merot B. 1998. Production of human lactoferrin in transgenic tobacco plants. Protein Express. Purif. 13, 127–135.

    Article  CAS  Google Scholar 

  • Sanford JC. 1988. The Biolistic process. Trends in Biotechnology, 6: 299–302.

    Article  CAS  Google Scholar 

  • Schillberg S, Zimmermann S, Voss A and Fischer R. 1999. Apoplastic and cytosolic expression of full-size antibodies and antibody fragments in Nicotiana tabacum. Transgenic Research, 8: 255–263.

    Article  CAS  Google Scholar 

  • Schouten A, Roosien J, de Boer JM, Wilmink A, Rosso MN, Bosch D, Stiekema WJ, Gommers FJ, Bakker J and Schots A. 1997. Improving scFv antibody expression levels in the plant cytosol. FEBS Lett., 415: 235–241.

    Article  PubMed  CAS  Google Scholar 

  • Schouten A, Roosien J, van Engelen FA, de Jong GAM, Borst-Vrenssen AWM, Zilverentant JF, Bosch D, Steidema WJ, Gommers FJ, Schots A and Bakker J. 1996. The C-terminal KDEL sequence increases the expression level of a single-chain antibody designed to be targeted to both the cytosol and the secretory pathway in transgenic tobacco. Plant Mol. Biol., 30: 781–793.

    Article  PubMed  CAS  Google Scholar 

  • Sijmons PC, Dekker BMM, Schrammeijer B, Verwoerd TC, van den Elzen PJM and Hoekma A. 1990. Production of correctly processed human serum albumin in transgenic plants. BioTechnology, 8, 217–221.

    Article  PubMed  CAS  Google Scholar 

  • Stoger E, Vaquero C, Torres E, Sack M, Nicholson L, Drossard J, Williams S, Keen D, Perrin Y, Christou P and Fischer R. 2000. Cereal crops as viable production and storage systems for pharmaceutical scFv antibodies, Plant Mol. Biol. 42, 583–90.

    Article  PubMed  CAS  Google Scholar 

  • Tavladoraki P, Benvenuto E, Trinca S, Demartinis D, Cattaneo A and Galeffi P. 1993. Transgenic plants expressing a functional single-chain Fv antibody are specifically protected from virus attack. Nature, 366: 469–472.

    Article  PubMed  CAS  Google Scholar 

  • Tavladoraki P, Girotti A, Donini M, Arias FJ, Mancini C, Morea V, Chiaraluce R, Consalvi V and Benvenuto E. 1999. A single-chain antibody fragment is functionally expressed in the cytoplasm of both Escherichia coil and transgenic plants. Eur. J. Biochem., 262: 617–624.

    Article  PubMed  CAS  Google Scholar 

  • Turpen TH, Reinl SJ, Charoenvit Y, Hoffman SL, Fallarme V and Grill LK. 1995. Malarial epitopes expressed on the surface of recombinant tobacco mosaic virus. BioTechnol. 13, 53–57.

    Article  CAS  Google Scholar 

  • van der Veen MJ, van Ree R, Aalberse RC, Akkerdaas J, Koppelman SJ, Jansen HM and van der Zee JS. 1997. Poor biologic activity of cross-reactive IgE directed to carbohydrate determinants of glycoproteins. J. Allergy Clin. Immunol., 100: 327–34.

    Article  Google Scholar 

  • van Engelen FA, Schouten A, Molthoff JW, Roosien J, Salinas J, Dirkse WG, Schots A, Bakker J, Gommers FJ, Jongsma MA, Bosch D and Steikema WJ. 1994. Coordinate expression of antibody subunit genes yields high levels of functional antibodies in roots of transgenic tobacco. Plant Mol. Biol., 26: 1701–1710.

    Article  PubMed  Google Scholar 

  • van Ree R and Aalberse RC. 1999. Specific IgE without clinical allergy. J Allergy Clin. lmmunol.,103: 1000–100 I.

    Google Scholar 

  • Van Sumere CF, Albrecht J, Dedonder A, de Pooter H and Pé I. 1975. Plant Proteins and Phenolics. Chap. 8 in The Chemistry and Biochemistry of Plant Proteins (Harborne, J.B. and van Sumere, C.F., eds. ), Academic Press (London); p 211–264.

    Google Scholar 

  • Vaquero C, Sack M, Chandler J, Drossard J, Schuster F, Monecke M, Schillberg S and Fischer R. 1999. Transient expression of a tumor-specific single-chain fragment and a chimeric antibody in tobacco leaves. Proc. Natl. Acad. Sei. USA, 96: 11128–33.

    Article  CAS  Google Scholar 

  • von Behring E and Kitasato S. 1890. Ueber Zustandekommen der Diphtherie-Immunitat und der Tetanus-Immunitat bei Thieren. S. Dtsch. Med. Wochenschr. 16: 1 1 13.

    Google Scholar 

  • Wandelt CI, Khan MRI, Craig S, Schroeder HE, Spencer D and Higgins TJV. 1992. Vicilin with carboxy-terminal KDEL is retained in the endoplasmic reticulum and accumulates to high levels in leaves of transgenic plants. Plant Jour. 2 (2): 181–192.

    CAS  Google Scholar 

  • Whitelam GC, Cockburn W and Owen MRL. 1994. Antibody production in transgenic plants.

    Google Scholar 

  • Biochemical Society Transactions,22:940–943.

    Google Scholar 

  • Zambryski, P. et al. 1983. Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity. EMBO J., 2: 2143–2150.

    PubMed  CAS  Google Scholar 

  • Zeitlin L, Olmsted SS, Moench TR, Co MS, Martinell BJ, Paradkar VM, Russell DR, Queen C, Cone RA and Whaley KJ. 1998. A humanized monoclonal antibody produced in transgenic plants for immunoprotection of the vagina against genital herpes. Nat. Biotechnol., 16: 1361–1364.

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman S, Schillberg S and Liao YC. 1998. Intracelluar expression of TMV-specific single-chain Fv fragments leads to improved virus resistance in Nicotiana tabacum. Molecular Breeding, 4: 369–379.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Larrick, J.W., Yu, L., Naftzger, C., Jaiswal, S., Wycoff, K. (2002). Human Pharmaceuticals Produced in Plants. In: Hood, E.E., Howard, J.A. (eds) Plants as Factories for Protein Production. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2693-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2693-1_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6113-3

  • Online ISBN: 978-94-017-2693-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics