Skip to main content

Signal Transduction in Host-Parasite Interactions

  • Chapter
  • 358 Accesses

Abstract

Recognition is an early event in plant-microbe interactions that activates specific biochemical, physiological, or morphological reactions resulting in either disease development (compatible reaction) or resistance response (incompatible reaction). Very little is known about the mechanisms by which the event is initiated and proceeded. It is generally believed that recognition process begins with the arrival of a propagule on or in the vicinity of the host. The information is transduced from the pathogen to the host or vice verse via molecular interaction. The molecules involved in the process are signal molecules and their complementary receptors. The perception of the signal by the receptor generates intracellular second messengers that in turn activate, repress, or regulate gene expression.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexandre J, Lassalles JP, Kado RT (1990) Opening of Ca’ channels in isolated red beet root vacuole membrane by inositol 1,4,5-triphosphate. Nature 343: 567–570

    CAS  Google Scholar 

  • Apostol I, Heinstein PF, Low PS (1989) Rapid stimulation of an oxidative burst during elicitation of cultured plant cells. Role in defense and signal transduction. Plant Physiol 90: 109–116

    Google Scholar 

  • Assmann SM (1995) Cyclic AMP as a second messenger in higher plants. Status and future prospects. Plant Physiol 108: 885–889

    PubMed  CAS  Google Scholar 

  • Atkinson MM, Bina J, Sequeira L (1993) Phosphoinositide breakdown during the K’/H+ exchange response of tobacco to Pseudomonas syringae pv. syringae. Mol Plant-Microbe Interact 6: 253–260

    CAS  Google Scholar 

  • Ausubel FM, Katagiri F, Mindrinos M, Glazebrook J (1995) Use of Arabidopsis thaliana defense-related mutants to dissect the plant response to pathogens. Proc Natl Acad Sci USA 92: 4189–4196

    PubMed  CAS  Google Scholar 

  • Ayers AR, Ebel J, Valent B, Albersheim P (1976) Host-pathogen interactions. X. Fractionation and biological activity of an elicitor isolated from the mycelial walls of Phytophthora megasperma var. sojae. Plant Physiol 57: 760–765

    PubMed  CAS  Google Scholar 

  • Bach M, Schnitzler J-P, Seitz HU (1993) Elicitor-induced changes in Cat+ influx, K. efflux, and 4-hydroxybenzoic acid synthesis in protoplasts of Daucus carota L. Plant Physiol 103: 407412

    Google Scholar 

  • Baker CJ, Orlandi EW (1995) Active oxygen in plant pathogenesis. Annu Rev Phytopathol 33: 299–321

    PubMed  CAS  Google Scholar 

  • Baker CJ, Orlandi EW, Mock NM (1993) Harpin, an elicitor of the hypersensitive response in tobacco caused by Erwinia amylovora, elicits active oxygen production in suspension cells. Plant Physiol 102: 1341–1344

    PubMed  CAS  Google Scholar 

  • Barber MS, Bertram RE, Ride JP (1989) Chitin oligosaccharides elicit lignification in wounded wheat leaves. Physiol Mol Plant Pathol 34: 3–12

    CAS  Google Scholar 

  • Barton-Willis PA, Wang MC, Holliday MJ, Long MR, Keen NT (1984) Purification and composition of lipopolysaccharides from Pseudomonas syringae pv. syringae. Physiol Plant Pathol 25: 387–398

    CAS  Google Scholar 

  • Basse CW, Boller T (1992) Glycopeptide elicitors of stress responses in tomato cells. N-linked glycans are essential for activity but act as suppressors of the same activity when released from the glycopeptides. Plant Physiol 98: 1239–1247

    Google Scholar 

  • Basse C W, Bock K, Boller T (1992) Elicitors and suppressors of the defense response in tomato cells. Purification and characterization of glycopeptide elicitors and glycan suppressors generated by enzymatic cleavage of yeast invertase. J Biol Chem 267: 10258–10265

    Google Scholar 

  • Bayles CJ, Aist JR (1987) Apparent calcium mediation of resistance of an ml-o barley mutant to powdery mildew. Physiol Mol Plant Pathol 30: 337–345

    CAS  Google Scholar 

  • Bishop PD, Pearce G, Bryant JE, Ryan CA (1984) Isolation and characterization of the proteinase inhibitor-inducing factor from tomato leaves. Identity and activity of poly-and oligogalacturonide fragments. J Biol Chem 259: 13172–13177

    Google Scholar 

  • Blein J-P, Milat M-L, Ricci P (1991) Responses of cultured tobacco cells to cryptogein, a proteinaceous elicitor from Phytophthora cryptogea: possible plasmalemma involvement. Plant Physiol 95: 486–491

    PubMed  CAS  Google Scholar 

  • Bloch CB, De Wit PJGM, Kuc J (1984) Elicitation of phytoalexins by arachidonic and eicosapentaenoic acids: a host survey. Physiol Plant Pathol 25: 199–208

    CAS  Google Scholar 

  • Boller T (1989) Primary signals and second messengers in the reaction of plants to pathogens. In: Boss WF, Morré DJ (eds) Second messengers in plant growth and development. Alan R. Liss, New York, pp 227–255

    Google Scholar 

  • Boller T (1995) Chemoperception of microbial signals in plant cells. Annu Rev Plant Physiol Plant Mol Biol 46: 189–214

    CAS  Google Scholar 

  • Bolwell GP (1999) Role of active oxygen species and NO in plant defence responses. Curr Opin Plant Biol 2: 287–294

    PubMed  CAS  Google Scholar 

  • Bolwell GP, Wojtaszel P (1997) Mechanisms for the generation of reactive oxygen species in plant defence–a broad perspective. Physiol Mol Plant Pathol 51: 347–366

    CAS  Google Scholar 

  • Bolwell GP, Cramer CL, Lamb CJ, Schuch W, Dixon RA (1986) L-Phenylalanine ammonia-lyase from Phaseolus vulgaris: modulation of the levels of active enzyme by trans-cinnamic acid. Planta 169: 97–107

    CAS  Google Scholar 

  • Bolwell GP, Mavandad M, Miller DJ, Edwards KJ, Schuch W, Dixon RA (1988) Inhibition of mRNA levels and activities by trans-cinnamic acid in elicitor-induced bean cells. Phytochemistry 27: 2109–2117

    CAS  Google Scholar 

  • Bostock RM, Kue JA, Laine RA (1981) Eicosapentaenoic and arachidonic acids from Phyto-phthora infestans elicit fungitoxic sesquiterpenes in the potato. Science 212: 67–69

    PubMed  CAS  Google Scholar 

  • Bouaziz S, Van Heijenoort C, Guittet E, Huet J-C, Pernollet J-C (1994) Resonance assignment, cysteine-pairing elucidation and secondary-structure determination ofcapsicein, an a-elicitin, by three-dimensional ‘H NMR. Eur J Biochem 220: 427–438

    PubMed  CAS  Google Scholar 

  • Bradley DJ, Kjellbom P, Lamb CJ (1992) Elicitor-and wound-induced oxidative cross-linking of a proline-rich plant cell wall protein: a novel, rapid defense response. Cell 70: 21–30

    PubMed  CAS  Google Scholar 

  • Brisson LF, Tenhaken R, Lamb C (1994) Function of oxidative cross-linking of cell wall structural proteins in plant disease resistance. Plant Cell 6: 1703–1712

    PubMed  CAS  Google Scholar 

  • Broekaert WF, Peumans WJ (1988) Pectic polysaccharides elicit chitinase accumulation in tobacco. Physiol Plant 74: 740–744

    CAS  Google Scholar 

  • Brown EG, Newton RP (1981) Cyclic AMP and higher plants. Phytochemistry 20: 2453–2463

    CAS  Google Scholar 

  • Bruce RJ, West CA (1989) Elicitation of lignin biosynthesis and isoperoxidase activity by pectic fragments in suspension cultures of castor bean. Plant Physiol 91: 889–897

    PubMed  CAS  Google Scholar 

  • Cao H, Bowling SA, Gordon AS, Dong X (1994) Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell 6: 1583–1592

    PubMed  CAS  Google Scholar 

  • Capasso R, Cristinzio G, Evidente A, Visca C, Ferranti P, Del Vecchio-Blanco F, Parente A (1999) Elicitin 172 from an isolate of Phytophthora nicotianae pathogenic to tomato. Phytochemistry 50: 703–709

    PubMed  CAS  Google Scholar 

  • Castle AJ, Day AW (1984) Isolation and identification of a-tocopherol as an inducer of the parasitic phase of Ustilago violacea. Phytopathology 74: 1194–1200

    CAS  Google Scholar 

  • Cervone F, De Lorenzo G, Degra L, Salvi G (1986) Interaction of fungal polygalacturonase with plant proteins in relation to specificity and regulation of plant defense response. In: Lutenberg B (ed) Recognition in microbe-plant symbiotic and pathogenic interactions. Springer-Verlag, Berlin, pp 253–258

    Google Scholar 

  • Chandra S, Low PS (1995) Role of phosphorylation in elicitation of the oxidative burst in cultured soybean cells. Proc Natl Acad Sci USA 92: 4120–4123

    PubMed  CAS  Google Scholar 

  • Chandra S, Heinstein PF, Low PS (1996) Activation of phospholipase A by plant defense elicitors. Plant Physiol 110: 979–986

    PubMed  CAS  Google Scholar 

  • Chen Z, Klessig DF (1991) Identification of a soluble salicylic acid-binding protein that may function in signal transduction in the plant disease-resistance response. Proc Natl Acad Sci 88: 8179–8183.

    PubMed  CAS  Google Scholar 

  • Chen Z, Silva H, Klessig DF (1993) Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science 262: 1883–1886

    PubMed  CAS  Google Scholar 

  • Chen Z, Malamy J, Henning J, Conrath U, Sanchez-Casas P, Silva H, Ricigliano J, Klessig DF (1995) Induction, modification, and transduction of the salicylic acid signal in plant defense responses. Proc Natl Acad Sci USA 92: 4134–4137

    PubMed  CAS  Google Scholar 

  • Cheong J-J, Alba R, Côté F, Enkerli J, Hahn MG (1993) Solubilization of functional plasma membrane-localized hepta-ß-glucoside elicitor-binding proteins from soybean. Plant Physiol 103: 1173–1182

    PubMed  CAS  Google Scholar 

  • Churngchow N, Rattarasarn M (2000) The elicitin secreted by Phytophthora palmivora, a rubber tree pathogen. Phytochemistry 54: 33–38

    PubMed  CAS  Google Scholar 

  • Cohen Y, Niderman T, Mosinger E, Fluhr R (1994) ß-Aminobutric acid induces the accumulation of pathogenesis-related proteins in tomato (Lycopersicon esculentum L.) plants and resistance to late blight infection caused by Phytophthora infestans. Plant Physiol 104: 59–66

    PubMed  CAS  Google Scholar 

  • Coleman MJ, Mainzer J, Dickerson AG (1992) Characterization of a fungal glycoprotein that elicits a defence response in French bean. Physiol Mol Plant Pathol 40: 333–351

    CAS  Google Scholar 

  • Conrath U, Domard A, Kauss H (1989) Chitosan-elicited synthesis of callose and of coumarin derivatives in parsley cell suspension cultures. Plant Cell Reports 8: 152–155

    CAS  Google Scholar 

  • Cooke CJ, Newton RP, Smith CJ, Walton TJ (1989) Pathogenic elicitation of phytoalexin in lucerne tissue: involvement of cyclic AMP in the intracellular mechanism. Biochem Soc Trans 17: 919–920

    Google Scholar 

  • Cooke CJ, Smith CJ, Walton TJ, Newton RP (1994) Evidence that cyclic AMP is involved in the hypersensitive response óf Medicago sativa to a fungal elicitor. Phytochemistry 35: 889895

    Google Scholar 

  • Cooksey CJ, Garratt PJ, Dahiya JS, Strange RN (1983) Sucrose: a constitutive elicitor of phytoalexin synthesis. Science 220: 1398–1400

    PubMed  CAS  Google Scholar 

  • Cosio EG, Frey T, Ebel J (1992) Identification of a high-affinity binding protein for a hepta-ßglucoside phytoalexin elicitor in soybean. Eur J Biochem 175: 309–315

    Google Scholar 

  • Côté F, Cheong J-J, Alba R, Hahn MG (1995) Characterization of binding proteins that recognize

    Google Scholar 

  • oligoglucoside elicitor of phytoalexin synthesis in soybean. Physiol Plant 93:401–410 Cruickshank IAM, Perrin DR (1968) The isolation and partial characterization of monilicolin A, a polypeptide with phaseollin-inducing activity from Moniliniafructicola. Life Sci 7: 449–458

    Google Scholar 

  • Culver JN, Dawson WO (1989) Point mutations in the coat protein gene of tobacco mosaic virus induce hypersensitivity in Nicotiana sylvestris. Mol Plant-Microbe Interact 2: 209–213

    Google Scholar 

  • Culver JN, Dawson WO (1991) Tobacco mosaic virus elicitor coat protein genes produce a hypersensitive phenotype in transgenic Nicotiana sylvestris plants. Mol Plant-Microbe Interact 4: 458–463

    CAS  Google Scholar 

  • Darvill A, Augur C, Bergmann C, Carlson RW, Cheong J-J, Eberhard S, Hahn MG, Ló V-M, Marfà V, Meyer B, Mohnen D, O’Neill MA, Spiro MD, van Halbeek H, York WS, Albersheim P (1992) Oligosaccharins–Oligosaccharides that regulate growth, development and defence responses in plants. Glycobiology 2: 181–198

    PubMed  CAS  Google Scholar 

  • Davis D, Merida J, Legendre L, Low PS, Heinstein P (1993) Independent elicitation of the oxidative burst and phytoalexin formation in cultured plant cells. Phytochemistry 32: 607–611

    CAS  Google Scholar 

  • Davis KR, Hahlbrock K (1987) Induction of defense responses in cultured parsley cells by plant cell wall fragments. Plant Physiol 84: 1286–1290

    PubMed  CAS  Google Scholar 

  • Davis KR, Darvill AG, Albersheim P (1986a) Host-pathogen interactions. XXIX. Oligogalacturonides released from sodium polypectate by endopolygalacturonic acid lyase are elicitors of phytoalexins in soybean. Plant Physiol 80: 568–577

    Google Scholar 

  • Davis KR, Darvill AG, Albersheim P, Dell A (1986b) Host-pathogen interactions. XXX. Characterization of elicitors of phytoalexin accumulation in soybean released from soybean cell walls by endopolygalacturonic acid lyase. Z Naturforsch 41c: 39–48

    Google Scholar 

  • Delaney, T. P., Uknes, S., Vernooij, B., Friedrich, L., Weymann, K., Negrotto, D., Gaffney, T., Gut-Rella M, Kessmann H, Ward E, Ryals J (1994) A central role of salicylic acid in plant disease resistance. Science 266: 1247–1250

    PubMed  CAS  Google Scholar 

  • Devergne J-C, Bonnet P, Panabières F, Blein J-P, Ricci P (1992) Migration of the fungal protein cryptogein within tobacco plants. Plant Physiol 99: 843–847

    PubMed  CAS  Google Scholar 

  • Devlin WS, Gustine DL (1992) Involvement of the oxidative burst in phytoalexin accumulation and the hypersensitive reaction. Plant Physiol 100: 1189–1195

    PubMed  CAS  Google Scholar 

  • De Wit PJGM, Hofman AE, Velthuis GCM, Kuc JA (1985) Isolation and characterization of an elicitor of necrosis isolated from intercellular fluids of compatible interactions of Cladosporium fidvum (syn. Fulvia fulva) and tomato. Plant Physiol 77: 642–647

    PubMed  Google Scholar 

  • Dittrich H, Kutchan TM, Zenk MH (1992) The jasmonate precursor, 12-oxo-phytodienoic acid, induces phytoalexin synthesis in Petroselinum crispum cell cultures. FEBS Lett 309: 33–36

    PubMed  CAS  Google Scholar 

  • Dixon RA, Harrison MJ (1990) Activation, structure and organization of genes involved in microbial defence in plants. Adv Genet 28: 165–234

    PubMed  CAS  Google Scholar 

  • Dixon RA, Lamb CJ (1990) Molecular communication in interactions between plants and microbial pathogens. Annu Rev Plant Physiol Plant Mol Biol 41: 339–367

    CAS  Google Scholar 

  • Doke N (1983) Involvement of superoxide anion generation in the hypersensitive response of potato tuber tissues to infection with an incompatible race of Phytophthora infestans and to the hyphal wall components. Physiol Plant Pathol 23: 345–357

    CAS  Google Scholar 

  • Doke N (1985) NADPH-dependent 02 generation in membrane fractions isolated from wounded potato tubers inoculated with Phytophthora infestans. Physiol Plant Pathol 27: 311–322

    CAS  Google Scholar 

  • Doke N, Garas NA, Kuc J (1980) Effect on host hypersensitivity of suppressors released during the germination of Phytophthora infestans cytospores. Phytopathology 70: 35–39

    CAS  Google Scholar 

  • Dong X, Mindrinos M, Davis KR, Ausubel FM (1991) Induction of Arabidopsis defense genes by virulent and avirulent Pseudomonas syringae strains and by a cloned avirulent gene. Plant Cell 3: 61–72

    PubMed  CAS  Google Scholar 

  • Doubrava NS, Dean A, Kuc J (1988) Induction of systemic resistance to anthracnose caused by Colletotrichum lagenarium in cucumber by oxalate and extracts from spinach and rhubarb leaves. Physiol Mol Plant Pathol 33: 69–79

    CAS  Google Scholar 

  • Downie JA, Walker SA (1999) Plant responses to nodulation factors. Cur Opinion Plant Biol 2: 483–489

    CAS  Google Scholar 

  • Drebak BK (1993) Plant phosphoinositides and intracellular signaling. Plant Physiol 102: 705–709

    Google Scholar 

  • Drobak BK, Ferguson IB (1985) Release of Cat` from plant hypocotyl microsomes by inositol1,4,5-triphosphate. Biochem Biophys Res Commun 130: 1241–1246

    PubMed  CAS  Google Scholar 

  • Dron M, Clouse SD, Dixon RA, Lawton MA, Lamb CJ (1988) Glutathione and fungal elicitor regulation of a plant defense gene promoter in electroporated protoplasts. Proc Natl Acad Sci USA 85: 6738–6742

    PubMed  CAS  Google Scholar 

  • Ebel J, Cosio EG (1994) Elicitors of plant defense responses. Inter Rev Cytol 148: 1–36

    CAS  Google Scholar 

  • Ebel J, Scheel D (1992) Elicitor recognition and signal transduction. In: Boller T, Meins F Jr (eds) Genes involved in plant defense. Springer-Verlag, Wien, pp 183–205

    Google Scholar 

  • Einspahr KJ, Thompson GAJr (1990) Transmembrane signaling via phosphatidylinositol 4,5bisphosphate hydrolysis in plants. Plant Physiol 93: 361–366

    PubMed  CAS  Google Scholar 

  • Ellis JS, Keenan PJ, Rathmell WG, Friend J (1993) Inhibition of phytoalexin accumulation in potato tuber discs by superoxide scavengers. Phytochemistry 34: 649–655

    CAS  Google Scholar 

  • Enyedi AJ, Yalpani N, Silverman P, Raskin 1 (1992) Localization, conjugation, and function of salicylic acid in tobacco during the hypersensitive reaction to tobacco mosaic virus. Proc Natl Acad Sci USA 89: 2480–2484

    CAS  Google Scholar 

  • Ernst D, Schraudner M, Langebartels C, Sandermann HJr (1992) Ozone-induced changes of mRNA levels of 3–1,3-glucanase, chitinase and ‘pathogenesis-related’ protein l b in tobacco plants. Plant Mol Biol 20: 673–682

    PubMed  CAS  Google Scholar 

  • Esquerré-Tugayé M-T, Fournier J, Mazau D, Mouly A, Pouénat ML, Rickauer M, Rumeau D, Sancan JP (1990) Cellular and molecular approaches of defense in plants. In: Ranjeva R, Boudet AM (eds) Signal perception and transduction in higher plants. Springer-Verlag, Berlin, pp 275–281

    Google Scholar 

  • Etzler ME, Kalsi G, Ewing NN, Roberts NJ, Day RB, Murphy JB (1999) A nod factor binding lectin with apyrase activity from legume roots. Proc Natl Acad Sci USA 96: 5856–5861

    PubMed  CAS  Google Scholar 

  • Farmer EE (1994) Fatty acid signalling in plants and their associated microorganisms. Plant Mol Biol 26: 1423–1437

    PubMed  CAS  Google Scholar 

  • Farmer EE, Helgeson JP (1987) An extracellular protein from Phytophthora parasitica var nicotianae is associated with stress metabolite accumulation in tobacco callus. Plant Physiol 85: 733–740

    PubMed  CAS  Google Scholar 

  • Favaron F, Alghisi P, Marciano P, Magro P (1988) Polygalacturonase isozymes and oxalic acid produced by Sclerotinia sclerotiorum in soybean hypocotyls as elicitors of glyceol lin. Physiol Mol Plant Pathol 33: 385–395

    CAS  Google Scholar 

  • Felix G, Grosskopf DG, Regenass M, Boller T (1991) Rapid changes of protein phosphorylation are involved in transduction of the elicitor signal in plant cells. Proc Natl Acad Sci USA 88: 8831–8834

    PubMed  CAS  Google Scholar 

  • Felix G, Regenass M, Spanu P, Boller T (1994) The protein phosphatase inhibitor calyculin A mimics elicitor action in plant cells and induces rapid hyperphosphorylation of specific proteins as revealed by pulse labeling with [33P]phosphate. Proc Natl Acad Sci USA 91: 952956

    Google Scholar 

  • Fernandez-Bolanos J, Heredia A (1993) Review: Plant cell wall fragments as elicitors. Rev Esp Cienc Tecnol Aliment 33: 577–596

    Google Scholar 

  • Firmin JL, Wilson KE, Rossen L, Johnston AWB (1986) Flavonoid activation of nodulation genes in Rhizobium reversed by other compounds present in plants. Nature 324: 90–92

    CAS  Google Scholar 

  • Fournier J, Pelissier B, Esquerré-Tugayé M-T (1986) Induction of lipoxygenase activity in cultured tobacco (Nicotiana tabacum) cells by elicitor of ethylene from Phytophthora parasitica var. nicotianae. CR Acad Sci Paris t 303: 15: 651–654

    CAS  Google Scholar 

  • Frey T, Cosio EG, Ebel J (1993) Affinity purification and characterization of a binding protein for a hepta-(3-glucoside phytoalexin elicitor in soybean. Phytochemistry 32: 543–550

    CAS  Google Scholar 

  • Fricker MD, Gilroy SG, Trewavas AJ (1990) Signal transduction in plant cells and the calcium message. In: Ranjeva R, Boudet AM (eds) Signal Perception and Transduction in Higher Plants, Springer-Verlag, Berlin, pp 89–102

    Google Scholar 

  • Friedrich L, Lawton K, Ruess W, Masner P, Specker N, Gut-Rella M, Meier B, Dincher S, Staub T, Uknes S, Métraux J-P, Kessmann H, Ryals J (1996) A benzothiadiazole derivative induces systemic acquired resistance in tobacco. Plant J 10: 61–70

    CAS  Google Scholar 

  • Fügedi P, Garegg PJ, Kvarnström I, Svansson L (1988) Synthesis of a heptasaccharide structurally related to the phytoelicitor active glucan of Phytophthora megasperma f. sp. glycinea. J Carbohydr Chem 7: 389–397

    Google Scholar 

  • Fukuda Y, Shinshi H (1994) Characterization of a novel cis-acting element that is responsive to a fungal elicitor in the promoter of a tobacco class I chitinase gene. Plant Mol. Biol. 24: 485493.

    Google Scholar 

  • Gaffney T, Friedrich L, Vernooij B, Negrotto D, Nye G, Uknes S, Ward E, Kessmann H, Ryals J (1993) Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261: 754–756

    PubMed  CAS  Google Scholar 

  • Galliano H, Cabané M, Eckerskorn C, Lottspeich F, Sandermann HJr, Ernst D (1993) Molecular cloning, sequence analysis and elicitor-/ozone-induced accumulation of cinnamyl alcohol dehydrogenase from Norway spruce (Picea abies L.). Plant Mol Biol 23: 145–156

    PubMed  CAS  Google Scholar 

  • Gelvin SB (1992) Chemical signaling between Agrobacterium and its plant host. In: Verma DPS (ed) Molecular signals in plant-microbe communications. CRC Press, Boca Raton, pp 137–167

    Google Scholar 

  • Gilbert RD, Johnson AM, Dean RA (1996) Chemical signals responsible for appressorium formation in the rice blast fungus Magnaporthe grisea. Physiol Mol Plant Pathol 48: 335–346

    CAS  Google Scholar 

  • Gilman AG (1987) G proteins: transducers of receptor-generated signals. Annu Rev Biochem 56: 615–649

    PubMed  CAS  Google Scholar 

  • Godoy G, Steadman JR, Dickman MB (1990) Use of mutants to demonstrate the role of oxalic acid in pathogenicity of Sclerotinia sclerotiorum on Phaseolus vulgaris. Physiol Mol Plant Pathol 37: 179–191

    CAS  Google Scholar 

  • Grab D, Feger M, Ebel J (1989) An endogenous factor from soybean (Glycine max L.) cell cultures activates phosphorylation of a protein which is dephosphorylated in vivo in elicitor-challenged cells. Planta 179: 340–348

    CAS  Google Scholar 

  • Gross W, Boss WF (1993) Inositol phospholipids and signal transduction. In: Verma DPS (ed) Control of plant gene expression. CRC Press, Boca Raton, pp 17–32

    Google Scholar 

  • Gundlach H, Müller Mi, Kutchan TM, Zenk MH (1992) Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. Proc Natl Acad Sci USA 89: 2389–2393

    PubMed  CAS  Google Scholar 

  • Gutierrez M-C, Parry A, Tena M, Jorrin J, Edwards R (1995) Abiotic elicitation of coumarin phytoalexins in sunflower. Phytochemistry 38: 1185–1191

    Google Scholar 

  • Haga M, Kohno Y, Iwata M, Sekizawa Y (1995) Superoxide anion generation in rice blade protoplasts with the blast fungus proteoglucomannan elicitor as determined by CLA-phenyl luminescence and its suppression by treating the elicitor with a-D-mannosidase. Biosci Biotech Biochem 59: 969–973

    CAS  Google Scholar 

  • Hahn M, Jüngling S, Knogge W (1993a) Cultivar-specific elicitation of barley defense reactions by the phytotoxic peptide NIP 1 from Rhynchosporium secalis. Mol Plant-Microbe Interact 6: 745–754

    PubMed  CAS  Google Scholar 

  • Hahn MG (1996) Microbial elicitors and their receptors in plants. Annu Rev Phytopathol 34: 387412

    Google Scholar 

  • Hahn MG, Grisebach H (1983) Cyclic AMP is not involved as a second messenger in the reponse of soybean to infection by Phytophthora megasperma f. sp. glycinea. Z Naturforsch 38c: 578582

    Google Scholar 

  • Hahn MG, Cheong J-J, Alba R, Enkerli J, Côté F (1993b) Oligosaccharide elicitors: structures and recognition. In: Fritig B, Legrand M (eds) Mechanisms of plant defense responses. Kluwer, Dordrecht, pp 99–116

    Google Scholar 

  • Hansford RG, Castro F (1985) Role of calcium in pyruvate dehydrogenase interconversion in brain mitochondria and synaptosomes. Biochem J 227: 129–136

    PubMed  CAS  Google Scholar 

  • Hayami C, Otani H, Nishimura S, Kohmoto K (1982) Induced resistance in pear leaves by spore germination fluids of nonpathogens to Alternaria alternata Japanese pear pathotype and suppression of the induction by AK-toxin. J Fac Agric Tottori Univ 17: 9–18

    Google Scholar 

  • Hong N, Ogawa T (1990) Stereocontrolled syntheses of phytoalexin elicitor-active (3-D-glucohexaoside and ß-D-glucononaoside. Tetrahedr Lett 31: 3179–3182

    CAS  Google Scholar 

  • Horn MA, Heinstein PF, Low PS (1989) Receptor-mediated endocytosis in plant cells. Plant Cell 1: 1003–1009

    PubMed  CAS  Google Scholar 

  • Huang J-S, Goodman RN (1970) The relationship of phosphatidase activity to the hypersensitive reaction in tobacco induced by bacteria. Phytopathology 60: 1020–1021

    CAS  Google Scholar 

  • Huet J-C, Pernollet J-C (1989) Amino acid sequence of cinnamomin, a new member of the elicitin family, and its comparison to cryptogein and capsicein. FEBS Lett 257: 302–306

    PubMed  CAS  Google Scholar 

  • Huet J-C, Pernollet J-C (1993) Sequences of acidic and basic elicitin isoforms secreted by Phytophthora megasperma megasperma. Phytochemistry 33: 797–805

    PubMed  CAS  Google Scholar 

  • Huet J-C, Nespoulous C, Pernollet J-C (1992) Structures of elicitin isoforms secreted by Phytophthora drechsleri. Phytochemistry 31: 1471–1476

    PubMed  CAS  Google Scholar 

  • Huet J-C, Mansion M, Pernollet J-C (1993) Amino acid sequence of the a-elicitin secreted by Phytophthora cactorum. Phytochemistry 34: 1261–1264

    PubMed  CAS  Google Scholar 

  • Huet J-C, Sallé-Tourne M, Pernollet J-C (1994) Amino acid sequence and toxicity of the a elicitin secreted with ubiquitin by Phytophthora infestans. Mol Plant-Microbe Interact 7: 302304

    Google Scholar 

  • Huet J-C, Le Caer J-P, Nespoulous C, Pernollet J-C (1995) The relationships between the toxicity and the primary and secondary structures of elicitinlike protein elicitors secreted by the phytopathogenic fungus Pythium vexans. Mol Plant-Microbe Interact 8: 302–310

    PubMed  CAS  Google Scholar 

  • Hunt MD, Ryals JA (1996) Systemic acquired resistance signal transduction. Crit Rev Plant Sci 15: 583–606

    CAS  Google Scholar 

  • Hunter T, Karin M (1992) The regulation of transcription by phosphorylation. Cell 70: 375–387

    PubMed  CAS  Google Scholar 

  • Ichinose Y, Toyoda K, Barz W (1999) cDNA cloning and gene expression of three small GTP- binding proteins in defense response of chickpea. Biochim Biophys Acta 1489: 462–466

    Google Scholar 

  • Ito Y, Kaku H, Shibuya N (1997) Identification of a high-affinity binding protein for N-acetylchito-oligosaccharide elicitor in the plasma membrane of suspension-cultured rice cells by affinity labeling. Plant J 12: 347–356

    PubMed  CAS  Google Scholar 

  • Jacinto T, Farmer EE, Ryan CA (1993) Purification of potato leaf plasma membrane protein pp34, a protein phosphorylated in response to oligogalacturonide signals for defense and development. Plant Physiol 103: 1393–1397

    PubMed  CAS  Google Scholar 

  • Jaffe LF (1968) Localization in the developing Fucus egg and the general role of localizing currents. Adv Morphog 7: 295–328

    PubMed  CAS  Google Scholar 

  • Jakschik B, Sun F, Lee L, Steinhoff M (1980) Calcium stimulation of a novel lipoxygenase. Biochem Biophys Res Commun 95: 103–110

    PubMed  CAS  Google Scholar 

  • Ji C, Okinaka Y, Takesuchi Y, Tsurushima T., Buzzell R, Sims JJ, Midland SL, Slaymaker D, Yoshikawa M, Yamaoka N, Keen NT (1997) Specific binding of the syringolide elicitors to a soluble protein fraction from soybean leaves. Plant Cell 9: 1425–1433

    PubMed  CAS  Google Scholar 

  • Johannes E, Brosnan JM, Sanders D (1991) Calcium channels and signal transduction in plant cells. BioEssays 13: 331–336

    Google Scholar 

  • Joosten MHAJ, Cozijnsen TJ, De Wit PJGM (1994) Host resistance to a fungal tomato pathogen lost by a single base-pair change in an avirulent gene. Nature 367: 384–386

    PubMed  CAS  Google Scholar 

  • Jung J-L, Maurel S, Fritig B, Hahne G (1995) Different pathogenesis-related proteins are expressed in sunflower (Helianthus annuus L.) in response to physical, chemical and stress factors. J Plant Physiol 145: 153–160

    CAS  Google Scholar 

  • Kamoun S, Klucher KM, Coffey MD, Tyler BM (1993) A gene encoding a host-specific elicitor protein of Phytophthora parasitica. Mol Plant-Microbe Interact 6: 573–581

    PubMed  CAS  Google Scholar 

  • Kamoun S, Young M, Förster H, Coffey MD, Tyler BM (1994) Potential role of elicitins in the interaction between Phytophthora species and tobacco. Appl Environ Microbiol 60: 15931598

    Google Scholar 

  • Kämper.JT, Kämper U, Roger LM, Kolattukudy PE (1994) Identification of regulatory elements in the cutinase promoter from Fusarium solani f. sp. pisi (Nectria haematococca). J Biol Chem 269: 9195–9204

    PubMed  Google Scholar 

  • Kato H, Wada M, Muraya K, Malik K, Shiraishi T, Ichinose Y, Yamada T (1995) Characterization of nuclear factors for elicitor-mediated activation of the promoter of the pea phenylalanine ammonia-lyase gene 1. Plant Physiol 108: 129–139

    PubMed  CAS  Google Scholar 

  • Kauss H, Waldmann T, Jeblick W, Euler G, Ranjeva R, Domard A (1989) Ca’ is an important but not the only signal in callose synthesis induced by chitosan, saponins and polyene antibiotics. In: Lugtenberg BJJ (ed) Signal molecules in plants and plant-microbe interactions. Springer-Verlag, Berlin, pp 107–116

    Google Scholar 

  • Kauss H, Waldmann T, Quader H (1990) Ca’ as a signal in the induction of callose synthesis. In: Ranjeva R, Boudet AM (eds) Signal perception and transduction in higher plants. Springer-Verlag, Berlin, pp 117–131

    Google Scholar 

  • Kauss H, Waldmann T, Jeblick W, Takemoto JY (1991) The phytotoxin syringomycin elicits Ca“-dependent callose synthesis in suspension-cultured cells of Catharanthus roseus. Physiol Plant 81: 134–138

    CAS  Google Scholar 

  • Kawakita K, Doke N (1994) Involvement of a GTP-binding protein in signal transduction in potato tubers treated with the fungal elicitor from Phytophthora infestans. Plant Sci 96: 81–86

    CAS  Google Scholar 

  • Keen NT (1975) Specific elicitors of plant phytoalexin production: determinants of race specificity in pathogens? Science 187: 74–75

    PubMed  CAS  Google Scholar 

  • Keen NT, Dawson WO (1992) Pathogen avirulence genes and elicitors of plant defense. In: Boller T, Meins F Jr (eds) Genes involved in plant defense. Springer-Verlag, Wien, pp 85114

    Google Scholar 

  • Keen NT, Tamaki S, Kobayashi D, Gerhold D, Stayton M, Shen H, Gold S, Lorang J, ThordalChristensen H, Dahlbeck D, Staskawicz B (1990) Bacteria expressing avirulent gene D produce a specific elicitor of the soybean hypersensitive reaction. Mol Plant-Microbe Interact 3: 112–121

    CAS  Google Scholar 

  • Keen NT, Sims JJ, Midland S, Yoder M, Jurnak F, Shen H, Boyd C, Yucel I, Lorang J, Murillo J (1993) Determinants of specificity in the interaction of plants with bacterial pathogens. In: Nester EW, Verma DPS (eds) Advances in molecular genetics of plant-microbe interactions. Kluwer, Dordrecht, pp 211–220

    Google Scholar 

  • Kendra DF, Hadwiger LA (1987) Calcium and calmodulin may not regulate the disease resistance and pisatin formation responses of Pisum sativum to chitosan or Fusarium solani. Physiol Mol Plant Pathol 31: 337–348

    CAS  Google Scholar 

  • Kendra DF, Christian D, Hadwiger LA (1989) Chitosan oligomers from Fusarium solani/pea interactions, chitinase/j3-glucanase digestion of sporelings and fungal wall chitin actively inhibit fungal growth and enhance disease resistance. Physiol Mol Plant Pathol 35: 215–230

    CAS  Google Scholar 

  • Kessmann H, Barz W (1986) Elicitation and suppression of phytoalexin and isoflavone accumulation in cotyledons of Cicer arietinum L. as caused by wounding and by polymeric components from the fungus Ascochyta rabiei. J Phytopathol 117: 321–335

    CAS  Google Scholar 

  • Kiba A, Toyoda K, Ichinose Y, Yamada T, Shiraishi T (1995) Specific inhibition of cell wall-bound ATPases by fungal suppressor from Mycosphaerella pinodes. Plant Cell Physiol 36: 809–817

    CAS  Google Scholar 

  • Kobayashi A, Akiyama K, Kawazu K (1994) Partially N-deacetylated chitin fragments are strong elicitors for (+)-pisatin induction in epicotyls of pea. Z Naturforsch 49c: 302–308

    CAS  Google Scholar 

  • Kobayashi DY, Tamaki SJ, Keen NT (1989) Cloned avirulent genes from the tomato pathogen Pseudomonas syringae pv. tomato confer cultivar specificity on soybean. Proc Natl Acad Sci USA 86: 157–161

    PubMed  CAS  Google Scholar 

  • Koda Y (1992) The role of jasmonic acid and related compounds in the regulation of plant development. Int Rev Cytol. 135: 155–199

    PubMed  CAS  Google Scholar 

  • Koga J,Yamauchi T, Shimura M, Ogawa N, Oshima K, Umemura K, Kikuchi M, Ogasawara N (1998) Cerebrosides A and C, sphingolipid elicitors of hypersensitive cell death and phytoalexin accumulation in rice plants. J. Biol. Chem. 273:31985–31991

    Google Scholar 

  • Kogel G, Beissmann B, Reisener HJ, Kogel KH (1988) A single glycoprotein from Puccinia graminis f. sp. tritici cell walls elicits the hypersensitive lignification response in wheat. Physiol Mol Plant Pathol 33: 173–185

    CAS  Google Scholar 

  • Kogel G, Beissmann B, Reisener HJ, Kogel K (1991) Specific binding of a hypersensitive lignification elicitor from Puccinia graminis f. sp. tritici to the plasma membrane from wheat (Triticum aestivum L.). Planta 183: 164–169

    CAS  Google Scholar 

  • Köhle H, Young DH, Kauss H (1984) Physiological changes in suspension-cultured soybean cells elicited by treatment with chitosan. Plant Sci Lett 33: 221–230

    Google Scholar 

  • Köhle H, Jeblick W, Poten F, Blaschek W, Kauss H (1985) Chitosan-elicited callose synthesis in soybean cells as a Cat+-dependent process. Plant Physiol 77: 544–551

    PubMed  Google Scholar 

  • Kolattukudy PE (1992) Plant-fungal communications that trigger genes for breakdown and reinforcement of host defensive barriers. In: Verma DPS (ed) Molecular signals in plant-microbe communications. CRC Press, Boca Raton, pp 65–83

    Google Scholar 

  • Kolattukudy PE, Rogers LM, Li D, Hwang C-S, Flaishman MA (1995) Surface signaling in pathogenesis. Proc Natl Acad Sci USA 92: 4080–4087

    PubMed  CAS  Google Scholar 

  • Kondo Y, Kawai Y, Hayashi T, Ohnishi M, Miyazawa T, Itoh S, Mizutani J (1993) Lipoxygenase in soybean seedlings catalyzes the oxygenation of phospholipid and such activity changes after treatment with fungal elicitor. Biochim Biophys Acta 1170: 301–306

    PubMed  CAS  Google Scholar 

  • Korfhage U, Trezzini GF, Meier I, Hahlbrock K, Somssich IE (1994) Plant homeodomain protein involved in transcriptional regulation of a pathogen defense-related gene. Plant Cell 6: 695708

    Google Scholar 

  • Kosslak RM, Bookland R, Barkei J, Paaren HE, Applebaum ER (1987) Induction of Bradyrhizobiumjaponicum common nod genes by isoflavones isolated from Glycine max. Proc Natl Acad Sci USA 84: 7428–7432

    PubMed  CAS  Google Scholar 

  • Kurosaki F, Nishi A (1993) Stimulation of calcium influx and calcium cascade by cyclic AMP in cultured carrot cells. Arch Biochem Biophys 302: 144–151

    PubMed  CAS  Google Scholar 

  • Kurosaki F, Tsurusawa Y, Nishi A (1987a) The elicitation of phytoalexins by Ca’ and cyclic AMP in carrot cells. Phytochemistry 26: 1919–1923

    CAS  Google Scholar 

  • Kurosaki F, Tsurusawa Y, Nishi A (1987b) Breakdown of phosphatidylinositol during the elicitation of phytoalexin production in cultured carrot cells. Plant Physiol 85: 601–604

    PubMed  CAS  Google Scholar 

  • Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 48: 251–275

    PubMed  CAS  Google Scholar 

  • Lawton KA, Friedrich L, Hunt M, Weymann K, Delaney T, Kessmann H, Staub T, Ryals J (1996) Benzothiadiazole induces disease resistance in Arabidopsis by activation of the systemic acquired resistance signal transduction pathway. Plant J 10: 71–82

    PubMed  CAS  Google Scholar 

  • Lawton MA, Lamb CA (1987) Transcriptional activation of defense genes by fungal elicitor, wounding, and infection. Mol Cell Biol 7: 335–341

    PubMed  CAS  Google Scholar 

  • Lebrun-Garcia A, Ouaked F, Chitlz A, Pugin A (1998) Activation of MAPK homologues by elicitors in tobacco cells. Plant J 15: 773–781

    PubMed  CAS  Google Scholar 

  • Lebrun-Garcia A, Bourque S, Binet M-N, Ouaked F, Wendehenne D, Chitlz A, Schaffner A, Pugin A (1999) Involvement of plasma membrane proteins in plant defense responses.

    Google Scholar 

  • Analysis of the cryptogein signal transduction in tobacco. Biochimie 81:663–668

    Google Scholar 

  • Lee H-I, León J, Raskin I (1995) Biosynthesis and metabolism of salicylic acid. Proc Natl Acad Sci USA 92: 4076–4079

    PubMed  CAS  Google Scholar 

  • Legendre L, Heinstein PF, Low PS (1992) Evidence for participation of GTP-binding proteins in elicitation of the rapid oxidative burst in cultured soybean cells. J Biol Chem 267: 20140–20147

    PubMed  CAS  Google Scholar 

  • Legendre L, Yueh YG, Crain R, Haddock N, Heinstein PF, Low PS (1993) Phospholipase C activation during elicitation of the oxidative burst in cultured plant cells. J Biol Chem 268: 24559–24563

    PubMed  CAS  Google Scholar 

  • Lehle L (1990) Phosphatidylinositol metabolism and its role in signal transduction in growing plants. Plant Mol Biol 15: 647–658

    PubMed  CAS  Google Scholar 

  • León J, Yalpani N, Raskin I, Lawton MA (1993) Induction of benzoic acid 2-hydroxylase in virus-inoculated tobacco. Plant Physiol 103: 323–328

    PubMed  Google Scholar 

  • Leroux B, Yanofsky MF, Winans SC, Ward JE, Ziegler SF, Nester EW (1987) Characterization of the virA locus of Agrobacterium tumefaciens: a transcriptional regulation and host range determinant. EMBO J 6: 849–856

    PubMed  CAS  Google Scholar 

  • Levine A, Tenhaken R, Dixon R, Lamb C (1994) H202 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79: 583–593

    PubMed  CAS  Google Scholar 

  • Lhomme O, Bruneteau M, Costello CE, Mas P, Molot P-M, Dell A, Tiller PR, Michel G (1990) Structural investigations and biological activity of inositol sphingophospho-lipids from Phytophthora capsici. Eur J Biochem 191: 203–209

    PubMed  CAS  Google Scholar 

  • Lois R, Dietrich A, Hahlbrock K, Schulz W (1989) A phenylalanine ammonia-lyase gene from parsley: structure, regulation and identification of eleicitor and light responsive cis-acting elements. EMBO J 8: 1641–1648

    PubMed  CAS  Google Scholar 

  • Longman D, Callow JA (1987) Specific saccharide residues are involved in the recognition of plant root surfaces by zoospores of Pythium aphanidermatum. Physiol Mol Plant Pathol 30: 139–150

    CAS  Google Scholar 

  • Low PS, Merida JR (1996) The oxidative burst in plant defense: function and signal transduction. Physiol Plant 96: 533–542

    CAS  Google Scholar 

  • Lupu R, Grossman S, Cohen Y (1980) The involvement of lipoxygenase and antioxidants in pathogenesis of powdery mildew on tobacco plants. Physiol Plant Pathol 16: 241–248

    CAS  Google Scholar 

  • Malamy J, Carr JP, Klessig DF, Raskin 1 (1990) Salicylic acid: A likely endogenous signal in the resistance response of tobacco to viral infection. Science 250: 1002–1004

    Google Scholar 

  • Marmé D (1989) The role of calcium and calmodulin in signal transduction. In: Boss WF, Morré DJ (eds) Second messengers in plant growth and development. Alan R. Liss, New York, pp 57–80

    Google Scholar 

  • Mateos FV, Rickauer M, Esquerré-Tugayé M-T (1997) Cloning and characterization of a cDNA encoding an elicitor of Phytophthora parasitica var. nicotianae that shows cellulose-binding and lectin-like activities. Mol Plant-Microbe Interact 10: 1045–1053

    PubMed  CAS  Google Scholar 

  • Mayama S, Tani T, Ueno T, Midland SL, Sims J.1, Keen NT (1986) The purification of victorin and its phytoalexin elicitor activity in oat leaves. Physiol Mol Plant Pathol 29: 1–18

    CAS  Google Scholar 

  • McDowell JM, Dangl JL (2000) Signal transduction in the plant immune response. Trend Biochem Sci 25: 74–79

    Google Scholar 

  • Mehdy MC (1994) Active oxygen species in plant defense against pathogens. Plant Physiol 105: 467–472

    PubMed  CAS  Google Scholar 

  • Mehdy MC, Sharma YK, Sathasivan K, Bays NW (1996) The role of activated oxygen species in plant disease resistance. Physiol Plant 98: 365–374

    CAS  Google Scholar 

  • Messiaen J, Van Cutsem P (1993) Defense gene transcription in carrot cells treated with oligogalacturonides. Plant Cell Physiol 34: 1117–1123

    CAS  Google Scholar 

  • Métraux JP, Signer H, Ryals J, Ward E, Wyss-Benz M, Gaudin J, Raschdorf K, Schmid E, Blum W, Inverardi B (1990) Increase in salicylic acid at the onset of systemic acquired resistance in cucumber. Science 250: 1004–1006

    PubMed  Google Scholar 

  • Mitchell HJ, Hall JL, Barber MS (1994) Elicitor-induced cinnamyl alcohol dehydrogenase activity in lignifying wheat (Triticum aestivum L.) leaves. Plant Physiol 104: 551–556

    PubMed  CAS  Google Scholar 

  • Mithöfer A, Fliegmann J, Ebel J (1999) Isolation of a French bean (Phaseolus vulgaris L.) homolog to the ß-glucan elicitor-binding protein of soybean (Glycine max L.). Biochim Biophys Acta 1418: 127–132

    PubMed  Google Scholar 

  • Mo Y-Y, Gross DC (1991) Plant signal molecules activate the syrB gene, which is required for syringomycin production by Pseudomonas syringae pv. syringae. J Bacteriol 173: 5784–5792

    PubMed  CAS  Google Scholar 

  • Mo Y-Y, Geibel M, bonsall RF, Gross DC (1995) Analysis of sweet cherry (Prunus avium L.) leaves for plant signal molecules that activate the syrB gene required for synthesis of the phytotoxin, syringomycin, by Pseudomonas syringae pv syringae. Plant Physiol 107: 603–612

    PubMed  CAS  Google Scholar 

  • Montillet J-L, Degousée N (1991) Hydroperoxides induce glyceollin accumulation in soybean. Plant Physiol Biochem 29: 689–694

    CAS  Google Scholar 

  • Mouly A, Rumeau D, Esquerré-Tugayé M-T (1992) Differential accumulation of hydroxyprolinerich glycoprotein transcripts in sunflower plants infected with Sclerotinia sclerotiorum or treated with oxalic acid. Plant Sci 85: 51–59

    CAS  Google Scholar 

  • Mouton-Perronnet F, Bruneteau M, Denoroy L, Bouliteau P, Ricci P, Bonne P, Michel G (1995) Elicitin produced by an isolate of Phytophthora parasitica pathogenic to tobacco. Phytochemistry 38: 41–44

    PubMed  CAS  Google Scholar 

  • Mueller MJ, Brodschelm W, Spannagl E, Zenk MIT (1993) Signaling in the elicitation process is mediated through the octadecanoid pathway leading to jasmonic acid. Proc Natl Acad Sci USA 90: 7490–7494

    PubMed  CAS  Google Scholar 

  • Nasu K, Shiraishi T, Yoshioka H, Hori N, Ichinose Y, Yamada T, Oku H (1992) An endogenous suppressor of the defense response in Pisum sativum. Plant Cell Physiol 33: 617–626

    CAS  Google Scholar 

  • Nennstiel D, Scheel D, Nürnberger T (1998) Characterization and partial purification of an oligopeptide elicitor receptor from parsley (Petroselinum crispum). FEBS Lett 431: 405–410

    PubMed  CAS  Google Scholar 

  • Neuenschwander U, Vernooij B, Friedrich L, Uknes S, Kessmann H, Ryals J (1995) Is hydrogen peroxide a second messenger of salicylic acid in systemic acquired resistance? Plant J 8: 227–233

    CAS  Google Scholar 

  • Neuenschwander U, Lawton K, Ryals J (1996) Systemic acquired resistance. In: Stacey G, Keen NT (eds) Plant microbe interactions. Chapman and Hall, New York, pp 81–106

    Google Scholar 

  • Newman MA, Daniels MJ, Dow, JM (1995) Lipopolysaccharide from Xanthomonas campestris induces defense-related gene expression in Brassica campestris. Mol Plant-Microbe Interact 8: 778–780

    PubMed  CAS  Google Scholar 

  • Niebel A, Gressent F, Bono J-J, Ranjeva R, Cullmore J (1999) Recent advances in the study of Nod factor perception and signal transduction. Biochimie 81: 669–674

    PubMed  CAS  Google Scholar 

  • Nojiri H, Sugimori M, Yamane H, Nishimura Y, Yamada A, Shibuya N, Kodama O, Murofushi N, Omori T (1996) Involvement ofjasmonic acid in elicitor-induced phytoalexin production in suspension-cultured rice cells. Plant Physiol 110: 387–392

    PubMed  CAS  Google Scholar 

  • Nothnagel EA, McNeil M, Albersheim P, Dell A (1983) Host-pathogen interactions. XXII. A galacturonic aicd oligosaccharide from plant cell walls elicits phytoalexins. Plant Physiol 71: 916–926

    Google Scholar 

  • Nürnberger T, Nennstiel D, Jabs T, Sacks WR, Hahlbrock K, Scheel D (1994) High affinity binding of a fungal oligopeptide elicitor to parsley plasma membranes triggers multiple defense responses. Cell 78: 449–460

    PubMed  Google Scholar 

  • Nürnberger T, Nennstiel D, Hahlbrock K, Scheel D (1995) Covalent cross-linking of the Phytophthora megasperma oligopeptide elicitor to its receptor in parsley membranes. Proc Natl Acad Sci USA 92: 2338–2342

    PubMed  Google Scholar 

  • Ocampo CA, Moerschbacher B, Grambow HJ (1986) Increased lipoxygenase activity is involved in the hypersensitive response of wheat leaf cells infected with avirulent rust fungi or treated with fungal elicitor. Z Naturforsch 41c: 559–563

    CAS  Google Scholar 

  • Ohta H, Shida K, Peng Y-L, Furusawa I, Shishiyama J, Aibara S, Morita Y (1991) A lipoxygenase pathway is activated in rice after infection with the rice blast fungus Magnaporthe grisea. Plant Physiol 97: 94–98

    PubMed  CAS  Google Scholar 

  • Oku H (1992) Gene expression in susceptibility and resistance of fungal plant diseases. In: Verma DPS (ed) Molecular signals in plant-microbe communications. CRC Press, Boca Raton, pp 49–64

    Google Scholar 

  • Palm CJ, Costa MA, An G, Ryan CA (1990) Wound-inducible nuclear protein binds DNA fragments that regulate a proteinase inhibitor Il gene from potato. Proc Natl Acad Sci USA 87: 603–607

    PubMed  CAS  Google Scholar 

  • Parker JE, Schulte W, Hahlbrock K, Scheel D (1991) An extracellular glycoprotein from Phytophthora megasperma f. sp. glycinea elicits phytoalexin synthesis in cultured parsley cells and protoplasts. Mol Plant-Microbe Interact 4: 19–27

    CAS  Google Scholar 

  • Pearce G, Strydom D, Johnson S, Ryan CA (1991) A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. Science 253: 895–898

    PubMed  CAS  Google Scholar 

  • Peña-Cortés H, Albrecht T, Prat S, Weiler EW, Willmitzer L (1993) Aspirin prevents wound-induced gene expression in tomato leaves by blocking jasmonic acid biosynthesis. Planta 191: 123–128

    Google Scholar 

  • Pernollet J-C, Sallantin M, Sallé-Tourne M, Huet J-C (1993) Elicitin isoforms from seven Phytophthora species: comparison of their physico-chemical properties and toxicity to tobacco and other plant species. Physiol Mol Plant Pathol 42: 53–67

    CAS  Google Scholar 

  • Peters NK, Frost JW, Long SR (1986) A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes. Science 233: 977–980

    PubMed  CAS  Google Scholar 

  • Phillips DA, Joseph CM, Maxwell CA (1992) Trigonelline and stachydrine released from alfalfa seeds activate NodD2 preotein in Rhizobium meliloti. Plant Physiol 99: 1526–1531

    PubMed  CAS  Google Scholar 

  • Pingret J-L, Journet E-P, Barker DG (1998) Rhizobium Nod factor signaling: evidence for a G protein-mediated transduction mechanism. Plant Cell 10: 659–671

    Google Scholar 

  • Pivot V, Bruneteau M, Mas P, Bompeix G, Michel G (1994) Isolation, characterization and biological activity of inositol sphingophospholipids from Phytophthora capsici. Lipids 29: 2125

    Google Scholar 

  • Podila GK, Rogers LM, Kolattukudy PE (1993) Chemical signals from avocado surface wax trigger germination and appressorium formation in Colletotrichum gloeosporioides. Plant Physiol 103: 267–272

    PubMed  CAS  Google Scholar 

  • Poovaiah BW, Reddy ASN (1993) Calcium and signal transduction in plants. Crit Rev Plant Sci 12: 185–211

    PubMed  CAS  Google Scholar 

  • Randeep R, Shigeru T, Osamu K (1996) Role of jasmonic acid as a signaling molecule in coppern chloride-elicited rice phytoalexin production. Biosci Biotech Biochem 60: 1046–1048

    Google Scholar 

  • Raskin I, Skubatz H, Tamg W, Meeuse BJD (1990) Salicylic acid levels in thermogenic and non-thermogenic plants. Ann Bot 66: 369–373

    CAS  Google Scholar 

  • Rasmussen JB, Hammerschmidt R, Zook MN (1991) Systemic induction of salicylic acid accumulation in cucumber after inoculation with Pseudomonas syringae pv. syringae. Plant Physiol 97: 1342–1347

    PubMed  CAS  Google Scholar 

  • Redmond JW, Batley M, Djordjevic MA, Innes RW, Kuempel PL, Rolfe BG (1986) Flavones induce expression of nodulation genes in Rhizobium. Nature 323: 632–635

    CAS  Google Scholar 

  • Ren Y-Y, West CA (1991) Elicitation of diterpene biosynthesis in rice (Oryza sativa L.) by chitin. Plant Physiol 99: 1169–1178

    Google Scholar 

  • Renelt A, Coiling C, Hahlbrock K, Nürnberger T, Parker JE, Sacks WR, Scheel D (1993) Studies on elicitor recognition and signal transduction in plant defence. J Exp Bot 44: 257–268

    CAS  Google Scholar 

  • Ricci P, Panabieres F, Bonnet P, Maia N, Ponchet M, Devergne J-C, Marais A, Cardin L, Milat ML, Blein JP (1993) Proteinaceous elicitors of plant defense responses. In: Fritig B, Legrand M (eds) Mechanisms of plant defense responses. Kluwer, Dordrecht, pp 121–135

    Google Scholar 

  • Ride JP, Barber MS (1987) The effects of various treatments on induced lignification and the resistance of wheat to fungi. Physiol Mol Plant Pathol 31: 349–360

    CAS  Google Scholar 

  • Rincón M, Boss WF (1990) Second-messenger role of phosphoinositides. In: Morré DJ, Boss

    Google Scholar 

  • WF, Loewus FA (eds) Inositol metabolism in plants. Wiley-Liss, New York, pp 173–200 Robertsen B (1986) Elicitors of the production of lignin-like compounds in cucumber hypocotyls. Physiol Mol Plant Pathol 28: 137–148

    Google Scholar 

  • Robertsen B (1989) Pectate lyase from Cladosporium cucumerinum, purification, biochemical properties and ability to induce lignification in cucumber hypocotyls. Mycol Res 94: 595–602

    Google Scholar 

  • Roy S, Pouénat M-L, Caumont C, Cariven C, Prévost M-C, Esquerré-Tugayé M-T (1995) Phospholipase activity and phospholipid patterns in tobacco cells treated with fungal elicitor. Plant Sci 107: 17–25

    CAS  Google Scholar 

  • Ryals J, Uknes S, Ward E (1994) Systemic acquired resistance. Plant Physiol 104: 1109–1112

    PubMed  CAS  Google Scholar 

  • Ryals J, Lawton KA, Delaney TP, Friedrich L, Kessmann H, Neuenschwander U, Uknes S, Vernooij B, Weymann K (1995) Signal transduction in systemic acquired resistance. Proc Natl Acad Sci USA 92: 4202–4205

    PubMed  CAS  Google Scholar 

  • Ryan CA (2000) The systemin signaling pathway: differential activation of plant defensive genes. Biochim Biophys Acta 1477: 112–121

    PubMed  CAS  Google Scholar 

  • Ryan CA, Farmer EE (1991) Oligosaccharide signals in plants: a current assessment. Annu Rev Plant Physiol Plant Mol Biol 42: 651–674

    CAS  Google Scholar 

  • Sacks W (1995) Molecular characterization of nucleotide sequences encoding the extracellular glycoprotein elicitor from Phytophthora megasperma. Mol Gen Genet 246: 45–55

    PubMed  CAS  Google Scholar 

  • Saini RS, Chawia HKL, Wagle DS (1990) Catabolic activity of two phosphoric diester hydrolases in wheat leaves inoculated with brown rust, Puccinia recondita. Biol Plant 32: 313–318

    CAS  Google Scholar 

  • Sanchez-Casas P, Klessig DF (1994) A salicylic acid-binding activity and a salicylic acid-inhibitable catalase activity are present in a variety of plant species. Plant Physiol 106: 1675–1679

    PubMed  CAS  Google Scholar 

  • Sandermann H Jr, Ernst D, Heller W, Langebartels C (1998) Ozone: an abiotic elicitor of plant defence reactions. Trend Plant Sci 3: 2: 47–50

    Google Scholar 

  • Sano H, Ohashi Y (1995) Involvement of small GTP-binding proteins in defense signal-transduction pathways of higher plants. Proc Natl Acad Sci USA 92: 4138–4144

    PubMed  CAS  Google Scholar 

  • Schaffrath U, Scheinpflug H, Reisener HJ (1995) An elicitor from Pyricularia oryzae induces resistance responses in rice: isolation, characterization and physiological properties. Physiol Mol Plant Pathol 46: 293–307

    Google Scholar 

  • Scheel D, Coiling C, Keller H, Parker J, Schulte W, Hahlbrock K (1989) Studies on elicitor recognition and signal transduction in host and non-host plant/fungus pathogenic interactions. In: Lugtenberg BJJ (ed) Signal molecules in plants and plant-microbe interactions. Springer-Verlag, Berlin, pp 211–218

    Google Scholar 

  • Scheel D, Coiling C, Hedrich R, Kawalleck P, Parker JE, Sacks WR, Somssich IE, Hahlbrock K (1991) Signals in plant defence gene activation. In: Hennecke H, Verma DPS (eds) Advances in molecular genetics of plant-microbe interactions, vol 1. Kluwer, Dordrecht, pp 373–380

    Google Scholar 

  • Scheel D, Hahlbrock K, Jabs T, Nürnberger T, Sacks WR (1994) Specific recognition of a fungal oligopeptide elicitor by parsley cells. In: Daniels MJ, Downie JA, Osboum-AE (eds) Advances in molecular genetics of plant-microbe interactions, vol 3. Kluwer, Dordrecht, pp 313–318

    Google Scholar 

  • Schmidt WE, Ebel J (1987) Specific binding of a fungal glucan phytoalexin elicitor to membrane fractions from soybean Glycine max. Proc Natl Acad Sci USA 84: 4117–4121

    PubMed  CAS  Google Scholar 

  • Schottens-Toma IMJ, De Wit PJGM (1988) Purification and primary structure of a necrosis-inducing peptide from the apoplastic fluids of tomato infected with Cladosporium fulvum (syn. Fulvia fulva). Physiol Mol Plant Pathol 33: 59–67

    CAS  Google Scholar 

  • Sejalon-Del mas N, Mateos FV, Bottin A, Rickauer M, Dargent R, Esquerré-Tugayé M-T (1997). Purification, elicitor activity, and cell wall localization of a glycoprotein from Phytophthora parasitica var. nicotianae, a fungal pathogen of tobacco. Phytopathology 87: 899–909

    PubMed  CAS  Google Scholar 

  • Sembdner G, Parthier B (1993) The biochemistry and the physiological and molecular actions of jasmonates. Annu Rev Plant Physiol Plant Mol Biol 44: 569–589

    CAS  Google Scholar 

  • Sharp JK, McNeil M, Albersheim P (1984) The primary structures of one elicitor-active and seven elicitor-inactive hexa(ß-D-glucopyranosyl)-D-glucitols isolated from the mycelial walls of Phytophthora megasperma f. sp. glycinea. J Biol Chem 259: 11321–11336

    PubMed  CAS  Google Scholar 

  • Shibuya N, Kaku H, Kuchitsu K, Maliarik MJ (1993) Identification of a novel high-affinity binding site for N-acetylchitooligosaccharide elicitor in the membrane fraction from suspension-cultured rice cells. FEBS Lett 329: 75–78

    PubMed  CAS  Google Scholar 

  • Shiraishi T, Yamada T, Oku H, Yoshioka H (1991a) Suppressor production as a key factor for fungal pathogenesis. In: Patil SS, Ouchi S, Mills D, Vance C (eds) Molecular strategies of pathogens and host plants. Springer-Verlag, New York, pp 151–160

    Google Scholar 

  • Shiraishi T, Araki M, Yoshioka H, Kobayashi I, Yamada T, Ichinose Y, Kunoh H, Oku H (1991b) Inhibition of ATPase activity in pea plasma membranes in situ by a suppressor from a pea pathogen, Mycosphaerella pinodes. Plant Cell Physiol 32: 1067–1075

    CAS  Google Scholar 

  • Shiraishi T, Saitoh K, Kim HM, Kato T, Tahara M, Oku H, Yamada T, Ichinose Y (1992) Two suppressors, supprescins A and B, secreted by a pea pathogen, Mycosphaerella pinodes. Plant Cell Physiol 33: 663–667

    CAS  Google Scholar 

  • Shiraishi T, Yamada T, Saitoh K, Kato T, Toyoda K, Yoshioka H, Kim H-M, Ichinose Y, Tahara M, Oku H (1994) Suppressor: determinants of specificity produced by plant pathogens. Plant Cell Physiol 35: 1107–1 119

    Google Scholar 

  • Silverman P, Seskar M, Kanter D, Schweizer P, Métraux J-P Raskin I (1995) Salicylic acid in rice. Biosynthesis, conjugation, and possible role. Plant Physiol 108: 633–639

    Google Scholar 

  • Smith CJ (1994) Signal transduction in elicitation of phytoalexin synthesis. Biochem Soc Trans 22: 414–419

    PubMed  CAS  Google Scholar 

  • Smith RD, Walker JC (1996) Plant protein phosphatases. Annu Rev Plant Physiol Plant Mol Biol 47: 101–125

    PubMed  CAS  Google Scholar 

  • Spencer PA, Tanaka A, Towers GHN (1990) An Agrobacterium signal compound from grapevine cultivars. Phytochemistry 29: 3785–3788

    CAS  Google Scholar 

  • Spiteri A, Viratelle OM, Raymond P, Rancillac M, Labouesse J, Pradet A (1989) Artefactual origins of cyclic AMP in higher plant tissues. Plant Physiol 91: 624–628

    PubMed  CAS  Google Scholar 

  • Stab MR, Ebel J (1987) Effects of Ca’ on phytoalexin induction by fungal elicitor in soybean cells. Arch Biochem Biophys 257: 416–423

    PubMed  CAS  Google Scholar 

  • Stacey G, Sanjuan J, Luka S, Dockendorff T, Carlson RW (1995) Signal exchange in the Bradyrhizobium-soybean symbiosis. Soil Biol Biochem 27: 473–483

    CAS  Google Scholar 

  • Stachel SE, Messens E, Van Montagu M, Zambryski P (1985) Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature 318: 624–629

    Google Scholar 

  • Stallaert VM, Ducruet J, Tavernier E, Blein J (1995) Lipid peroxidation in tobacco leaves treated with the elicitor cryptogein: evaluation by high-temperature thermoluminescence emission and chlorophyll fluorescence. Biochim Biophys Acta 1229: 290–295

    Google Scholar 

  • Stone JM, Walker JC (1995) Plant protein kinase families and signal transduction. Plant Physiol 108: 451–457

    PubMed  CAS  Google Scholar 

  • Storti E, Pelucchini D, Tegli S, Scala A (1988) A potential defense mechanism of tomato against the late blight disease is suppressed by germinating sporangia-derived substances from Phytophthora infestans. J Phytopathol 121: 275–282

    Google Scholar 

  • Suzuki K, Shinshi H (1995) Transient activation and tyrosine phosphorylation of a protein kinase in tobacco cells treated with a fungal elicitor. Plant Cell 7: 639–647

    PubMed  CAS  Google Scholar 

  • Taylor JE, McAinsh MR, Montgomery L, Renwick KF, Webb AAR, Hetherington AM (1994) The use of transgenesis to investigate signal-transduction pathways. Biochem Soc Trans 22: 949–952

    PubMed  CAS  Google Scholar 

  • Tercé-Laforgue T, Huet J-C, Pernollet J-C (1992) Biosynthesis and secretion of cryptogein, a protein elicitor secreted by Phytophthora cryptogea. Plant Physiol 98: 936–941

    PubMed  Google Scholar 

  • Tietjen KG, Matern U (1984) Induction and suppression of phytoalexin biosynthesis in cultured cells of safflower, Carthamus tinctorius L., by metabolites of Alternaria carthami Chowdhu. Arch Biochem Biophys 229: 136–144

    PubMed  CAS  Google Scholar 

  • Toyoda K, Shiraishi T, Yoshioka H, Yamada T, Ichinose Y, Oku H (1992) Regulation of polyphosphoinositide metabolism in pea plasma membranes by elicitor and suppressor from a pea pathogen, Mycosphaerella pinodes. Plant Cell Physiol 33: 445–452

    CAS  Google Scholar 

  • Toyoda K, Shiraishi T, Yamada T, Ichinose Y, Oku H (1993) Rapid changes in polyphosphoinositide metabolism in pea in response to fungal signals. Plant Cell Physiol 34: 729–735

    CAS  Google Scholar 

  • Trewavas A, Gilroy S (1991) Signal transduction in plant cells. Trands Genet 7: 356–361

    CAS  Google Scholar 

  • Tsuyumu S (1977) Inducer of pectic acid lyase in Erwinia carotovora. Nature 269:237–238 Van den Ackerveken GFJM, Vossen P, De Wit PJGM (1993) The avr9 race-specific elicitor of Cladosporium fulvum is processed by endogenous and plant proteases. Plant Physiol 103: 91–96

    Google Scholar 

  • Tzeng DD, DeVay JE (1993) Role of oxygen radicals in plant disease development. Adv Plant Pathol 10: 1–34

    Google Scholar 

  • Van Kan JAL, Van den Ackerveken GFJM, De Wit PJGM (1991) Cloning and characterization of cDNA of avirulence gene avr9 of the fungal pathogen Cladosporium fulvum, causal agent of tomato leaf mold. Mol Plant-Microbe Interact 4: 52–59

    PubMed  Google Scholar 

  • Vander P, Varum KM, Domard A, EI-Gueddari NE, Moerschbacher BM (1998) Comparison of the ability of partially N-acetylated chitosans and chitooligosaccharides to elicit resistance reactions in wheat leaves. Plant Physiol 118: 1353–1359

    PubMed  CAS  Google Scholar 

  • Vera-Estrella R, Higgins VJ, Blumwald E (1992) Effect of specific elicitors of Cladosporium fulvum on tomato suspension cells. Evidence for the involvement of active oxygen species. Plant Physiol 99: 1208–1215

    Google Scholar 

  • Vera-Estrella R, Higgins VJ, Blumwald E (1994a) Plant defense response to fungal pathogens. II. G-protein-mediated changes in host plasma membrane redox reactions. Plant Physiol 106: 97–102

    Google Scholar 

  • Vera-Estrella R, Barkla BJ, Higgins VJ, Blumwald E (1994b) Plant defense response to fungal pathogens. Activation of host-plasma membrane H’-ATPase by elicitor-induced enzyme dephosphorylation. Plant Physiol 104: 209–215

    Google Scholar 

  • Verhey SD, Lomax TL (1993) Signal transduction in vascular plants. J Plant Growth Regul 12: 179–195

    CAS  Google Scholar 

  • Vernooij B, Friedrich L, Morse A, Reist R, Kolditz-Jawhar R, Ward E, Uknes S, Kessmann H, Ryals J (1994) Salicylic acid is not the translocated signal responsible for inducing systemic acquired resistance but is required in signal transduction. Plant Cell 6: 959–965

    PubMed  CAS  Google Scholar 

  • Vernooij B, Friedrich L, Ahl Goy P, Staub T, Kessmann H, Ryals J (1995) 2,6Dichloroisonicotinic acid-induced resistance to pathogens without the accumulation of salicylic acid. Mol Plant-Microbe Interact 8: 228–234

    Google Scholar 

  • Viard M-P, Martin F, Pugin A, Ricci P, Blein J-P (1994) Protein phosphorylation is induced in tobacco cells by the elicitor cryptogein. Plant Physiol 104: 1245–1249

    PubMed  CAS  Google Scholar 

  • Wada M, Kato H, Malik K, Sriprasertsak P, Ichinose Y, Shiraishi T, Yamada T (1995) A supprescin from a phytopathogenic fungus deactivates transcription of a plant defense gene encoding phenylalanine ammonia-lyase. J Mol Biol 249: 513–519

    PubMed  CAS  Google Scholar 

  • Walker-Simmons M, Hadwiger LA, Ryan CA (1983) Chitiosans and pectic poly-saccharides both induce the accumulation of the antifungal phytoalexin pisatin in pea pods and antinutrient proteinase inhibitors in tomato leaves. Biochem Biophys Res Commun 110: 194–199

    PubMed  CAS  Google Scholar 

  • Walker-Simmons M, Jin D, West CA, Hadwiger LA, Ryan CA (1984) Comparison of proteinase inhibitor-inducing activities and phytoalexin elicitor activities of a pure fungal endopolygalacturonase, pectic fragments, and chitosan. Plant Physiol 76: 833–836

    PubMed  CAS  Google Scholar 

  • Walton TJ, Cooke CJ, Newton RP, Smith CJ (1993) Evidence that generation of inositol 1,4,5-triphosphate and hydrolysis of phosphatidylinositol 4,5-bisphosphate are rapid responses following addition of fungal elicitor which induces phytoalexin synthesis in lucerne (Medicago sativa) suspension culture cells. Cellular Signalling 5: 345–356

    PubMed  CAS  Google Scholar 

  • Warpeha KMF, Hamm HE, Rasenick MM, Kaufman LS (1991) A blue-light-activated GTPbinding protein in the plasma membranes of etiolated peas. Proc Natl Acad Sci USA 88: 8925–8929

    PubMed  CAS  Google Scholar 

  • Wei Z-M, Laby RJ, Zumoff CH, Bauer DW, He SY, Collmer A, Beer SV (1992) Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science 257: 85–88

    PubMed  CAS  Google Scholar 

  • Wingate VPM, Lawton MA, Lamb CJ (1988) Glutathione cuases a massive and selective induction of plant defense genes. Plant Physiol 87: 206–210

    PubMed  CAS  Google Scholar 

  • Yalpani N, Balke NE, Schulz M (1992a) Induction of UDP-glucose:salicylic acid glucosyltransferase in oat roots. Plant Physiol 100: 1114–1119

    PubMed  CAS  Google Scholar 

  • Yalpani N, Schulz M, Davis MP, Balke NE (1992b) Partial purification and properties of an inducible uridine 5’-diphosphate-glucose:salicylic acid glucosyltransferase from oat roots. Plant Physiol 100: 457–463

    PubMed  CAS  Google Scholar 

  • Yalpani N, Leon J, Lawton MA, Raskin I (1993) Pathway of salicylic acid biosynthesis in healthy and virus-inoculated tobacco. Plant Physiol 103: 315–321

    PubMed  CAS  Google Scholar 

  • Yamada T, Hashimoto H, Shiraishi T, Oku H (1989) Suppression of pisatin, phenylalanine ammonia-lyase mRNA, and chalcone synthase mRNA accumulation by a putative pathogenicity factor from the fungus Mycosphaerella pinodes. Mol Plant-Microbe Interact 2: 256–261

    Google Scholar 

  • Yamada A, Shibuya N, Kodama O, Akatsuka T (1993) Induction of phytoalexin formation in suspension-cultured rice cells by N-acetylchitooligosaccharides. Biosci Biotech Biochem 57: 405–409

    CAS  Google Scholar 

  • Yang Y, Shah J, Klessig DF (1997) Signal perception and transduction in plant defense responses. Genes Dev 11: 1621–1639

    PubMed  CAS  Google Scholar 

  • Yoshikawa M, Sugimoto K (1993) A fungal suppressor of phytoalexin production competes for the elicitor-receptor binding. Naturwissenschaften 80: 374–376

    CAS  Google Scholar 

  • Yoshikawa M, Keen NT, Wang M-C (1983) A receptor on soybean membranes for a fungal elicitor of phytoalexin accumulation. Plant Physiol 73: 497–506

    PubMed  CAS  Google Scholar 

  • Young SA, Wang X, Leach JE (1996) Changes in the plasma membrane distribution of rice phopholipase D during resistant interactions with Xanthomonas oryzae pv oryzae. Plant Cell 8: 1079–1090

    PubMed  CAS  Google Scholar 

  • Zaat SAJ, Wijffelman CA, Spaink HP, Van Brussel AHN, Okker RJH, Lugtenberg, BJJ (1987) Induction of the nodA promoter of Rhizobium leguminosarum Sym plasmid pRL 1 JI by plant flavanones and flavones. J Bacteriol 169: 198–204

    PubMed  CAS  Google Scholar 

  • Zacheo G, Bleve-Zacheo T (1988) Involvement of superoxide dismutases and superoxide radicals in the susceptibility and resistance of tomato plants to Meloidogyne incognita attack. Physiol Mol Plant Pathol 32: 313–322

    CAS  Google Scholar 

  • Zaina S, Reggiani R, Bertani A (1990) Preliminary evidence for involvement of GTP-binding protein(s) in auxin signal transduction in rice (Oryza sativa L.) coleoptile. J Plant Physiol 36: 653–658

    Google Scholar 

  • Zhang S, Sheng J, Liu Y, Mehdy MC (1993) Fungal elicitor-induced bean proline-rich protein mRNA down-regulation is due to destabilization that is transcription and translation dependent. Plant Cell 5: 1089–1099

    PubMed  CAS  Google Scholar 

  • Zhao J, Williams CC, Last RL (1998) Induction of Arabidopsis tryptophan pathway enzymes and camalexin by amino acid starvation, oxidative stress, and an abiotic elicitor. Plant Cell 10: 359–370

    PubMed  CAS  Google Scholar 

  • Ziegler E, Pontzen R (1982) Specific inhibition of glucan-elicited glyceollin accumulation in soybean by an extracellular mannan-glycoprotein of Phytophthora megasperma f. sp. glycinea. Physiol Plant Pathol 20: 321–331

    CAS  Google Scholar 

  • Zook MN, Rush JS, Kuc JA (1987) A role for Cat in the elicitation of rishitin and lubimin accumulation in potato tuber tissue. Plant Physiol 84: 520–525

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Huang, JS. (2001). Signal Transduction in Host-Parasite Interactions. In: Plant Pathogenesis and Resistance. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2687-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2687-0_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5750-1

  • Online ISBN: 978-94-017-2687-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics