Skip to main content

Putting Plant Disease Resistance Genes to Work

  • Chapter
  • 45 Accesses

Abstract

Semi-dominant plant disease resistance (R) genes confer recognition of and response to specific races of pathogen that carry a corresponding Avirulence (Avr) gene. R proteins are presumed to recognise pathogen Avr gene-encoded products, or compatibility factors, that are likely to be involved in pathogenicity on the host. R genes against various important diseases have been used by plant breeders, but when deployed in monocultures, resistance frequently breaks down as races of the pathogen emerge that can overcome the R gene through recessive mutations in the corresponding Avr gene. Nevertheless, in nature, R genes have been maintained. In Arabidopsis, ~164 homologs of the largest class of R genes exist. These R genes encode proteins of the nucleotide binding-leucine rich repeat (NB-LRR) class (Dangl and Jones, 2001).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bergelson, J., Kreitman, M., Stahl, E. A., and Tian, D. C. (2001). Evolutionary dynamics of plant R-genes. Science 292, 2281–2285.

    Article  PubMed  CAS  Google Scholar 

  • Cruz, C. M. V., Bai, J. F., Ona, Leung, H., Nelson, R. J., Mew, T. W., and Leach, J. E. (2000). Predicting durability of a disease resistance gene based on an assessment of the fitness loss and epidemiological consequences of avirulence gene mutation. Proc Nat Acad Sci USA 97, 13500–13505.

    CAS  Google Scholar 

  • Dangl, J. L., and Jones, J. D. G. (2001). Plant pathogens and integrated defence responses to infection. Nature 411, 826–833.

    Article  PubMed  CAS  Google Scholar 

  • Dixon, M. S., Golstein, C., Thomas, C. M., van der Biezen, E. A., and Jones, J. D. G. (2000). Genetic complexity of pathogen perception by plants: The example of Rcr3, a tomato gene required specifically by Cf-2. Proc Nat Acad Sci USA 97, 8807.

    Article  PubMed  CAS  Google Scholar 

  • Garrett, K. A., and Mundt, C. C. (2000). Host diversity can reduce potato late blight severity for focal and general patterns of primary inoculum. Phytopathology 90, 1307–1312.

    Article  PubMed  CAS  Google Scholar 

  • Hamilton, W. D., Axelrod, R., and Tanese, R. (1990). Sexual Reproduction As an Adaptation to Resist Parasites (a Review). Proc Nat Acad Sci USA 87, 3566–3573.

    Article  PubMed  CAS  Google Scholar 

  • Hughes, A. L., and Yeager, M. (1998). Natural selection at major histocompatibility complex loci of vertebrates. Annu Rev Genet 32, 415–435.

    Article  PubMed  CAS  Google Scholar 

  • Jones, J. D. G. (2001). Putting knowledge of plant disease resistance genes to work. Curr Opin Plant Biol 4, 281–287.

    Article  PubMed  CAS  Google Scholar 

  • Noel, L., Moores, T. L., vanderBiezen, E. A., Parniske, M., Daniels, M. J., Parker, J. E., and Jones, J. D. G. (1999). Pronounced intraspecific haplotype divergence at the RPP5 complex disease resistance locus of Arabidopsis. Plant Cell 11, 2099–2111.

    PubMed  CAS  Google Scholar 

  • Pink, D., and Puddephat, I. (1999). Deployment of disease resistance genes by plant transformation–a ‘mix and match’ approach. Trends Plant Sci 4, 71–75.

    Article  PubMed  Google Scholar 

  • Rausher, M. D. (2001). Co-evolution and plant resistance to natural enemies. Nature 411, 857–864.

    Article  PubMed  CAS  Google Scholar 

  • Stahl, E. A., Dwyer, G., Mauricio, R., Kreitman, M., and Bergelson, J. (1999). Dynamics of disease resistance polymorphism at the Rpml locus of Arabidopsis. Nature 400, 667–671.

    Article  PubMed  CAS  Google Scholar 

  • Tai, T. H., Dahlbeck, D., Clark, E. T., Gajiwala, P., Pasion, R., Whalen, M. C., Stall, R. E., and Staskawicz, B. J. (1999). Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato. Proc Nat Acad Scien USAmerica 96, 14153–14158.

    Article  CAS  Google Scholar 

  • Tao, Y., Yuan, F. H., Leister, R. T., Ausubel, F. M., and Katagiri, F. (2000). Mutational analysis of the Arabidopsis nucleotide binding site-leucine-rich repeat resistance gene RPS2. Plant Cell 12, 2541–2554.

    PubMed  CAS  Google Scholar 

  • Wolfe, M. S. (1985). The current status and prospects of multiline cultivars and variety mixtures for disease resistance. Annu Rev Phytopathol 2, 251–273.

    Article  Google Scholar 

  • Wolfe, M. S., and McDermott, J. M. (1994). Population genetics of plant pathogen interactions: The example of the Erysiphe graminis-Hordeum vulgare pathosystem. Annu Rev Phytopathol 32, 89–113.

    Article  Google Scholar 

  • Zhu, Y. Y., Chen, H. R., Fan, J. H., Wang, Y. Y., Li, Y., Chen, J. B., Fan, J. X., Yang, S. S., Hu, L. P., Leung, H., et al. (2000). Genetic diversity and disease control in rice. Nature 406, 718–722.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jones, J.D.G., Brigneti, G., Smilde, D. (2003). Putting Plant Disease Resistance Genes to Work. In: Vasil, I.K. (eds) Plant Biotechnology 2002 and Beyond. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2679-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2679-5_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6220-8

  • Online ISBN: 978-94-017-2679-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics