Skip to main content

Environmental control of phytoplankton productivity in turbulent turbid systems

  • Chapter
Phytoplankton in Turbid Environments: Rivers and Shallow Lakes

Part of the book series: Developments in Hydrobiology ((DIHY,volume 100))

Abstract

Factors affecting phytoplankton productivity are analysed in turbid systems, such as shallow lakes and rivers. When resuspension from the sediment or loading from the catchment significantly increases inorganic (non-algal) turbidity and hence light attenuation potentials for high production are not realised. Energy available for phytoplankton growth is strongly regulated by underwater light availability which depends on the critical mixing depth, fluctuating light intensities and algal circulation patterns. Higher production rates in shallow waters are often compensated by greater algal respiration due to higher water temperatures when compared to deeper lakes.

Total daily integral production of turbulent, turbid environments can be predicted from a combination of easily measured variables such as maximum photosynthetic rates, algal biomass, surface irradiance and some measure of underwater light attenuation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baker, A. L. and K. K. Baker, 1979. Effects of temperature and current discharge on the concentration and photosynthetic activity of the phytoplankton in the upper Mississippi River. Freshwat. Biol. 9: 191–198.

    Google Scholar 

  • Bindloss, M. E., 1976. The light climate of Loch Leven, a shallow Scottish lake, in relation to primary production by phytoplankton. Freshwat. Biol. 6: 501–518.

    Google Scholar 

  • Brylinsky, M. and K. H. Mann, 1973. An analysis of factors governing productivity in lakes and reservoirs. Limnol. Oceanogr. 18: 1–14.

    Google Scholar 

  • Cole, B. E. and J. E. Cloern, 1987. An empirical model for estimating phytoplankton productivity in estuaries. Marine Ecology—Progress Series 36: 299–305.

    Article  Google Scholar 

  • Descy, J.-P., 1993. Ecology of the phytoplankton of the River Moselle: Effects of disturbances on community structure and diversity. Hydrobiologia 249: 111–116.

    Google Scholar 

  • Dokulil, M., 1979. Optical properties, colour and turbidity. In H. Löffler (ed.), Neusiedlersee: The limnology of a shallow lake in central Europe. Dr W. Junk Publishers, The Hague, Boston, London: 151–167.

    Google Scholar 

  • Dokulil, M., 1984. Assessment of components controlling phytoplankton photosynthesis and bacterioplankton production in a shallow, alkaline, turbid lake (Neusiedler See, Austria). Int. Revue ges. Hydrobiol. 69: 679–727.

    Google Scholar 

  • Dokulil, M., 1993. Nutrient input from point and non-point sources and the problem of eutrophication in the River Danube. Proc. Sc. Int. Conf. ‘The Danube—Common artery of Europe’, Dom technicky ZSVTS, Bratislava, Slovakia: 163–170.

    Google Scholar 

  • Dokulil, M. and I. Holst, 1990. Methods of biological sampling. Phytoplankton—photosynthesis. In U.H. Humpesch and J.M. Elliott (eds.) Methods of biological sampling in a large deep river—the Danube in Austria. Wasser und Abwasser 2/90: 17–23.

    Google Scholar 

  • Dokulil, M., L. Hammer and D. H. Jewson, 1978. Vergleichende Untersuchungen zur Primärproduktion des Phytoplanktons im Neusiedlersee. 02, ‘4C und Experimente mit künstlicher Zirkulation. Ber. Biol. Forsch. Inst. Burgenland 29: 60–73.

    Google Scholar 

  • Grobbelaar, J. U., 1985. Phytoplankton productivity in turbid waters. J. Plankton Res. 7: 653–663.

    Article  Google Scholar 

  • Grobbelaar, J. U., 1989. The contribution of phytoplankton productivity in turbid freshwaters to their trophic status. Hydrobiologia 173: 127–133.

    Article  CAS  Google Scholar 

  • Hary, N. and H.-P. Nachtnebel (eds.), 1989. Ökosystemstudie Donaustau Altenwörth. Veränderungen durch das Donaukraftwerk Altenwörth. Österr. Akad. Wiss., Ver. österr. MaB-Programm 14, Univ. Verlag Wagner, Innsbruck, 445 pp.

    Google Scholar 

  • Hary, N. and G. A. Janauer, (eds.) 1989. Intersdisziplinäre Studie Donau. Ostern. Wasserw. Verband, Eigenverlag, Wien, 362 pp.

    Google Scholar 

  • Holst, I., 1987. Die Steuerung der planktischen Primärproduktion im Stauraum Altenwörth. Master Thesis, Univ. Salzburg, 68 pp.

    Google Scholar 

  • Holst, I. and M. Dokulil, 1987. Die steuernden Faktoren der planktischen Primärproduktion im Stauraum Altenwörth an der Donau in Österreich. 26. Arbeitstagung der IAD, Passau/Deutschland, Wiss. Kurzreferate: 133–137.

    Google Scholar 

  • Jewson, D. H., 1976. The interaction of components controlling net photosynthesis in a well-mixed lake ( Lough Neagh, Northern Ireland). Freshwat. Biol. 6: 551–576.

    Google Scholar 

  • Jewson, D. H. and J. A. Taylor, 1978. The influence of turbidity on net phytoplankton photosynthesis in some Irish lakes. Freshwat. Biol. 8: 573–584.

    Google Scholar 

  • Jewson, D. H. and R. B. Wood, 1975. Some effects on integral photosynthesis of artificial circulation of phytoplankton through light gradients. Verh. int. Ver. Limnol. 19: 1037–1044.

    Google Scholar 

  • Lemoalle, J., 1973. L’énergie lumineuse et l’activité photosynthétique du phytoplancton dans le Lac Tchad. Cah. ORSTOM, sér. Hydrobiol. 7: 95–116.

    Google Scholar 

  • Lemoalee, J., 1981. Photosynthetic production and phytoplankton in the euphotic zone of some African and temperate lakes. Revue Hydrobiol. trop. 14: 31–37.

    Google Scholar 

  • Lind, O. T., R. Doyle, D. S. Vodopich, B. G. Trotter, J. G. Limón and L. Dävalos-Lind, 1992. Clay turbidity: Regulation of phytoplankton production in a large, nutrient-rich tropical lake. Limnol. Oceanogr. 37: 549–565.

    Google Scholar 

  • Löffler, H. (ed.), 1979. Neusiedlersee. Limnology of a shallow lake in Central Europe. Dr W. Junk Publishers, The Hague, Boston, London, 543 pp.

    Google Scholar 

  • Madden, C. J. and J. W. Day, Jr., 1992. Induced turbulence in rotating bottles affects phytoplankton productivity measurements in turbid waters. J. Plankton Res. 14: 1171–1191.

    Article  Google Scholar 

  • Marra, J., 1978a. Effect of short-term variations in light intensity on photosynthesis of a marine phytoplankter: a laboratory simulation study. Mar. Biol. 46: 191–202.

    Google Scholar 

  • Marra, J., 1978b. Phytoplankton photosynthetic response to vertical movement in a mixed layer. Mar. Biol. 46: 203–208.

    Google Scholar 

  • Mallin, A. M. and H. W. Paerl, 1992. Effects of variable irradiance on phytoplankton productivity in shallow esturaries. Limnol. Oceanogr. 37: 54–62.

    Google Scholar 

  • Nesterenko, B. V., 1986. Comparative evaluation of a calculation method for determining integral primary production. Hydrobiol. J. 22: 90–92 (in Russian).

    Google Scholar 

  • Padisâk, J. and M. Dokulil, 1994. Meroplankton dynamics in a saline, turbulent, turbid shallow lake ( Neusiedlersee, Austria and Hungary). Hydrobiologia, 289: 23–42.

    Google Scholar 

  • Platt, T., S. Sathyenfranath, C. Caverhill and M. Lewis, 1988. Ocean primary production and available light: Further algorithms for remote sensing. Deep-Sea Res. 35: 855–879.

    Google Scholar 

  • Resh, V. H., A. V. Brown, A. P. Covich, M. E. Gurtz, H. W. Li, G. W. Minshall, S. R. Reice, A. L. Sheldon, J. B. Wallace and R. C. Wismar, 1988. The role of disturbance in stream ecology, J. N. Am. Benthol. Soc. 7: 433–455.

    Google Scholar 

  • Reynolds, C. S., 1988. Potamoplankton: Paradigms, paradoxes and prognoses. In: F.E. Round (ed.), Algae and the aquatic environment. Contributions in honour of J.W.G. Lund. Biopress, Bristol: 285–311.

    Google Scholar 

  • Reynolds, C. S., 1993. Scales of disturbance and their role in plankton ecology. Hydrobiologia 249: 157–171.

    Article  Google Scholar 

  • Smetacek, V., B. von Bodungen, B. Knoppers, H. Neubert, F. Pollehne and B. Zeitschel, 1980. Shipboard experiments on the effect of vertical mixing on natural plankton populations in the central Baltic Sea. Ophelia 1 (Suppl.): 77–98.

    CAS  Google Scholar 

  • Smith, V. H., 1979. Nutrient dependence of primary productivity in lakes. Limnol. Oceanogr. 24: 1051–1064.

    Google Scholar 

  • Sç balle, D. M. and B. L. Kimmel, 1987. A large-scale comparison of factors influencing phytoplankton abundance in rivers, lakes, and impoundments. Ecology 68: 1943–1954.

    Google Scholar 

  • Sousa, W. P., 1984. The role of disturbance in natural communities. Ann. Rev. Ecol. Syst. 15: 353–391.

    Google Scholar 

  • Stellmacher, R. and B. Nixdorf, 1984. Ein Beitrag zur Anwendung der Regressionsanalyse im Zusamenhang mit der Schätzung der Primärproduktion im Großen Müggelsee (Berlin) für den Zeitraum 1979–1982. Acta hydrochim. hydrobiol. 12: 653–657.

    Google Scholar 

  • Tailing, J. F., 1957. The phytoplankton population as a compound photosynthetic system. New Phytol. 56: 133–149.

    Article  Google Scholar 

  • Tailing, J. F., 1971. The underwater light climate as a controlling factor in the production ecology of freshwater phytoplankton. Mitt. int. Ver. Limnol. 19: 214–243.

    Google Scholar 

  • Tailing, J. F., 1973. The application of some electrochemical methods to the measurement of photosynthesis and respiration in fresh waters. Freshwat. Biol. 3: 335–362.

    Google Scholar 

  • Vollenweider, R. A., 1960. Beiträge zur Kenntnis optischer Eigenschaften der Gewässer und Primärproduktion. Mem. Ist. Ital. Idrobiol. 12: 201–244.

    Google Scholar 

  • Vollenweider, R. A., 1974. A manual on methods for measuring primary production in aquatic environments. (IBP Handbook 12 ), Blackwell Sci., Oxford, 213 pp.

    Google Scholar 

  • Walsh, P. and L. Legendre, 1983. Photosynthesis of natural phytoplankton under high frequency light fluctuations simulating those induced by sea surface waves. Limnol. Oceanogr. 28: 688–697.

    Google Scholar 

  • Wofsy, S. C., 1983. A simple model to predict extinction coefficients and phytoplankton biomass in eutrophie waters. Limnol. Oceanogr. 28: 1144–1155.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dokulil, M.T. (1994). Environmental control of phytoplankton productivity in turbulent turbid systems. In: Descy, JP., Reynolds, C.S., Padisák, J. (eds) Phytoplankton in Turbid Environments: Rivers and Shallow Lakes. Developments in Hydrobiology, vol 100. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2670-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2670-2_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4464-8

  • Online ISBN: 978-94-017-2670-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics