Skip to main content

Ecophysiological characteristics of two planktonic desmid species originating from trophically different lakes

  • Conference paper
Phytoplankton and Trophic Gradients

Part of the book series: Developments in Hydrobiology ((DIHY,volume 129))

  • 295 Accesses

Abstract

Two planktonic desmid species were compared in some of their ecophysiological characteristics. Staurastrum chaetoceras, well-known for its abundant occurrence in eutrophic lakes, showed a higher photosynthetic capacity and a higher maximum (intrinsic) growth rate than Cosmarium abbreviatum var. planctonicum, a taxon only encountered in oligo-mesotrophic habitats. The two taxa are comparable in cell size. When grown under a stringent continuous inorganic phosphorus (P i ) limitation C. abbreviatum realized a higher growth rate, due to a higher affinity for the uptake of P i , than S. chaetoceras. On the other hand, under those conditions, S. chaetoceras displayed a two times higher maximum P i uptake rate (V max ). Regarding cellular alkaline phosphatase activity (hydrolysis of the organic P substrate MFP) C. abbreviatum showed both a higher affinity and maximum rate than S. chaetoceras.

In a way, these characteristics reflect the distribution pattern of the two species in the field. For in eutrophic lakes, during the summer algal bloom, species often have to compete for light as the growth limiting factor, whereas species occurring in oligo-mesotrophic lakes usually face permanently growth-limiting P concentrations. Since in eutrophic lakes during summer algal bloom dissolved inorganic P concentrations can also be low, the ability of phytoplankton to acquire P i from short-lived pulses (e.g. excretion of P by zooplankton or fish) has to be considered an important additional characteristic in view of competition. Concerning the two desmid species under discussion, S. chaetoceras will have a competitive advantage when Pi is supplied in distinct pulses, due to its higher V max values. On the other hand, C. abbreviatum possibly will be superior in competition for organic P substrates.

In the species studied, different strategies were found to benefit optimally from the resource conditions inherent in the trophic state of their habitat.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Berger, C. & H. E. Sweers, 1988. The IJsselmeer and its phytoplankton–with special attention to the suitability of the lake as a habitat for Oscillatoria agardhii Gom. J. Plankton Res. 10: 579–599.

    Article  CAS  Google Scholar 

  • Berman, T., 1970. Alkaline phosphatases and phosphorus availability in Lake Kinneret. Limnol. Oceanogr. 15: 663–674.

    Article  CAS  Google Scholar 

  • Coesel, P. F. M. 1994. On the ecological significance of a cellular mucilaginous envelope in planktic desmids. Algol. Stud. 73: 6574.

    Google Scholar 

  • Coesel, P. F. M. & K. Wardenaar, 1990. Growth responses of planktonic desmid species in a temperature-light gradient. Freshwat. Biol. 23: 551–560.

    Article  Google Scholar 

  • Coesel, P. F. M. & K. Wardenaar, 1994. Light-limited growth and photosynthetic characteristics of two planktonic desmid species. Freshwater Biol. 31: 221–226.

    Article  Google Scholar 

  • Doonan, B. B. & T. E. Jensen, 1977. Ultrastructural localization of alkaline phosphatase in the blue-green bacterium Plectonema boryanum. J. Bact. 132: 967–973.

    PubMed  CAS  Google Scholar 

  • Guillard, R. R. L., P. Kilham & T. A. Jackson, 1973. Kinetics of silicon-limited growth in the marine diatom Thalassiosira pseudonana hasle and heimdal (= Cyclotella nana hustedt). J. Phycol. 9: 233–237.

    CAS  Google Scholar 

  • Hantke, B., I. Domany, P. Fleischer, M. Koch, P. Pleß, M. Wiendl & A. Melzer, 1996a. Depth profiles of the kinetics of phosphatase activity in hardwater lakes of different trophic level. Arch. Hydrobiol. 135: 451–471.

    CAS  Google Scholar 

  • Hantke, B., P. Fleischer, I. Domany, M. Koch, P. Pleß, M. Wiendl & A. Melzer, 1996b. P-release from DOP by phosphatase activity in comparison to P excretion by zooplankton. Studies in hardwater lakes of different trophic level. Hydrobiologia 317: 151–162.

    Article  CAS  Google Scholar 

  • Healey, F. P., 1985. Interacting effects of light and nutrient limitation on the growth rate of Synechococcus linearis (Cyanophyceae). J. Phycol. 21: 134–146.

    Article  Google Scholar 

  • Hecky, R. E. & R. Kilham, 1974. Environmental control of phytoplankton cell size. Limnol. Oceanogr. 19: 361–366.

    Article  Google Scholar 

  • Herbland, A., A. Le Bouteiller & P. Raimboult, 1985. Size structure of phytoplankton biomass in the equatorial Atlantic Ocean. Deep-Sea Res. 32: 810–836.

    Article  Google Scholar 

  • Huisman, J. & F. J. Weissing, 1994. Light-limited growth and competition for light in well-mixed aquatic environments: An elementary model. Ecology 75: 507–520.

    Article  Google Scholar 

  • Huisman, J. & F. J. Weissing, 1995. Competition for nutrients and light in a mixed water column: A theoretical analysis. Am. Nat. 146: 536–564.

    Article  Google Scholar 

  • Jansson, M., H. Olsson & K. Pettersson, 1988. Phosphatases; origin, characteristics and function in lakes. Hydrobiologia 170: 157175.

    Google Scholar 

  • Kilham, P. & D. Tilman, 1979. The importance of resource competition and nutrient gradients for phytoplankton ecology. Ergebn. Limnol. 13: 110–119.

    Google Scholar 

  • Knoechel, R. & F. deNoyelles, 1980. Analysis of the response of hypolimnetic phytoplankton in continuous culture to increased light or phosphorus using track autoradiography. Can. J. Fish. aquat. Sci. 37: 434–441.

    Article  Google Scholar 

  • Kuenzler, E. J. & J. P. Peras, 1965. Phosphatase of marine algae. Biol. Bull. 128: 271–284.

    Article  Google Scholar 

  • Lingeman, R., F. Heinis & A. Veen, 1987. Time series of physical, chemical and plankton parameters in Lake Maarsseveen I: 1980 Hydrobiol. Bull. 21: 25–38.

    CAS  Google Scholar 

  • Lund, J. W. G., 1965. The ecology of freshwater phytoplankton. Biol. Rev. 40: 231–293.

    Article  Google Scholar 

  • Maestrini, S. Y. & D. J. Bonin, 1981. Competition among phytoplankton based on inorganic macronutrients. In Platt T. (ed), Physiological basis of phytoplankton ecology. Can. Bull. Fish. aquat. Sci. Dept. of Fisheries and Oceans, Ottawa: 264–278.

    Google Scholar 

  • Perry, M. J., 1972. Alkaline phosphatase activity in subtropical Central North Pacific waters using a sensitive fluorometric method. Mar. Biol. 15: 113–119.

    Article  CAS  Google Scholar 

  • Phillips, O. M., 1973. The equilibrium and stability of simple marine biological systems. I. Primary nutrients consumers. Am. Nat. 107: 73–93.

    Article  Google Scholar 

  • Reynolds, C. S., 1987. The response of phytoplankton communities to changing lake environments. Schweiz. Z. Hydrol. 49: 220–235.

    Article  Google Scholar 

  • Rhee, G-Y. & I. J. Gotham, 1981. The effect of environmental factors on phytoplankton growth: temperature and the interactions of temperature with nutrient limitation. Limnol. Oceanogr. 26: 635648.

    Google Scholar 

  • Riegman, R. & L. R. Mur, 1984. Regulation of phosphate uptake kinetics in Oscillatoria agardhii. Arch. Microbiol. 139: 28–32.

    Article  CAS  Google Scholar 

  • Smith, R. E. H. & J. Kalff, 1982. Size-dependent phosphorus uptake kinetics and cell quota in phytoplankton. J. Phycol. 18: 275–284.

    Article  CAS  Google Scholar 

  • Sommer, U., 1981. The role of r-and K-selection in the succession of phytoplankton in Lake Constance. Acta Oecologia 2: 327–342.

    Google Scholar 

  • Spijkerman, E. & R. F. M. Coesel, 1996a. Phosphorus uptake and growth kinetics of two planktonic desmid species. Eur. J. Phycol. 31: 53–60.

    Article  Google Scholar 

  • Spijkerman, E. & P. F. M. Coesel, 1996b. Competition for phosphorus between planktonic desmid species in continuous flow culture. J. Phycol. 32: 939–948.

    Article  Google Scholar 

  • Swain, W. R., R. Lingeman & F. Heinis, 1987. A characterization and description of the Maarsseveen Lake system. Hydrobiol. Bull. 21: 5–16.

    Article  CAS  Google Scholar 

  • Taylor, P. A. & P. J. LeB. Williams, 1975. Theoretical studies on the coexistence of competing species under continuous-flow conditions. Can. J. Microbiol. 21: 90–98.

    Article  PubMed  CAS  Google Scholar 

  • Tilman, D., 1977. Resource competition between planktonic algae: An experimental and theoretical approach. Ecology 58: 338–348.

    Article  CAS  Google Scholar 

  • Tilman, D., 1980. Resources: a graphical-mechanistic approach to competition and predation. Am. Nat. 116: 362–393.

    Article  Google Scholar 

  • Tilman, D., 1982. Resource competition and community structure. Princeton.

    Google Scholar 

  • Tilman, D., S. S. Kilham & R. Kilham, 1982. Phytoplankton community ecology: The role of limiting nutrients. Ann. Rev. Ecol. Syst. 13: 349–372.

    Article  Google Scholar 

  • Van Liere, L., J. G. Loogman & L. R. Mur, 1978. Measuring light-irradiance in cultures of phototrophic micro-organisms. FEMS Microbiol. Letters 3: 161–164.

    Google Scholar 

  • Watson, S. & J. Kalff, 1981. Relationships between nannoplankton and lake trophic status. Can. J. Fish. aquat. Sci. 38: 960–967.

    Article  Google Scholar 

  • Wehr, J. D., 1993. Effects of experimental manipulations of light and phosphorus supply on competition among picoplankton and nanoplankton in an oligotrophic lake. Can. J. Fish. aquat. Sci. 50: 936–945.

    Article  Google Scholar 

  • Wynne, D. & M. Gophen, 1981. Phosphatase activity in freshwater thesis and growth. In Platt T. & W.K.W. Li (eds), Photosynthetic zooplankton. Oikos 37: 369–376.

    Google Scholar 

  • Zevenboom, W., 1986. Ecophysiology of nutrient uptake, photosynthesis and growth. In Platt T. & W.K.W.Li (eds), Photosynthetic picoplankton. Can. Bull. Fish. aquat. Sci. 214: 391–422.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Spijkerman, E., Coesel, P.F.M. (1998). Ecophysiological characteristics of two planktonic desmid species originating from trophically different lakes. In: Alvarez-Cobelas, M., Reynolds, C.S., Sánchez-Castillo, P., Kristiansen, J. (eds) Phytoplankton and Trophic Gradients. Developments in Hydrobiology, vol 129. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2668-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2668-9_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5067-0

  • Online ISBN: 978-94-017-2668-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics