Skip to main content

On the occurrence of Phacotus lenticularis (Chlorophyta) in lakes of different trophic state

  • Conference paper
Phytoplankton and Trophic Gradients

Part of the book series: Developments in Hydrobiology ((DIHY,volume 129))

Abstract

The occurrence of the calcite-loricated chlamydophycean alga Phacotus lenticularis was investigated in relation to the trophic state of inland waters. The Phytoflagellate was observed in deep, stratified dimictic lakes, in shallow polymictic lakes, oxbow-lakes and ponds. Habitats of Phacotus are rich in lime and vary from oligo- to hypertrophic. Mass developments with cell numbers of 500,000–5.5 × 106 individuals 1−1 were found in lakes with properties in the ranges: TP 34–484 µg 1−1, SRP 2–88 µg 1−1, NO2 0–32 µg 1−1, NO3 0–820 µg 1−1 and NH4 + 10–740 µg 1−1. The most consistently co-incidental site factors were water temperature and pH values. High abundances were observed at temperatures between 15.8 and 24.7 °C and at pH values from 8.3 to 9.6. The results are discussed in the context of numerous records of Phacotus published in the literature. The morphometric and ecological data come mainly from the main investigated waters of the Baltic Lake District of northeastern Germany.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balch, W. M., P. M. Holligan and K. A. Kilpatrick, 1992. Calcification, photosynthesis and growth of the bloom-forming coccolithophore, Emiliania huxleyi. Cont. Shelf Res. 12: 1353–1374.

    Google Scholar 

  2. Balch, W. M., K. A. Kilpatrick, P. M. Holligan and T. L. Cucci, 1993. Coccolith formation and detachment by Emiliania huxleyi (Prymnesiophyceae). J. Phycol. 29: 566–575.

    Google Scholar 

  3. Bergquist, A. M. and S. R. Carpenter, 1986. Grazing of phytoplankton: Effects on species growth rates, phosphorus limitation, chlorophyll, and primary production. Ecology 67: 1351–1360.

    Google Scholar 

  4. Blaauboer, M. C. T., 1982. The phytoplankton species composition and the seasonal periodicity in Lake Vechten from 1956–1979. Hydrobiologia 95: 25–36.

    Article  Google Scholar 

  5. Brinley, F. J. and L. J. Katzin, 1942. Distribution of stream plankton in the Ohio River System. Am. Midl. Naturalist 27: 177–191.

    Google Scholar 

  6. Bucka, H., 1987. Ecological aspects of the mass appearance of planktonic algae in dam reservoirs of southern Poland. Acta Hydrobiol. 29: 149–191.

    Google Scholar 

  7. Casper, S. J. (ed), 1985. Lake Stechlin - a temperate oligotrophic lake. Monographiae Biologicae 58: XIV + 550 pp. Dr. W. Junk Publishers, Dordrecht.

    Google Scholar 

  8. Cole, G. A., 1955. An ecological study of the microbenthic fauna of two Minnesota lakes. Am. Midl. Naturalist 53: 213–230.

    Google Scholar 

  9. Dokulil, M. and C. Skolaut, 1986: Succession of phytoplankton in a deep stratifying lake: Mondsee, Austria. Hydrobiologia 138: 9–24.

    Google Scholar 

  10. Ehrenberg, C. G., 1831. Ober die Entwicklung und Lebensdauer der Infusionsthiere, nebst ferneren Beiträgen zu einer Vergleichung ihrer organischen Systeme. Abh. Königl. Akad. Wiss. Berlin: 1–154.

    Google Scholar 

  11. Ehrenberg, C. G., 1838. Die Infusionsthiere als vollkommene Organismen - mit Atlas. Berlin und Leipzig, 547 pp.

    Google Scholar 

  12. Elser, J. J, N. C. Goff, N. A. MacKay, A. L. St. Amand, M. N. Elser and S. R. Carpenter, 1987. Species specific algal responses to zooplankton: experimental and field observations in three nutrient-limited lakes. J. Plankton Res. 9: 699–717.

    Article  Google Scholar 

  13. Fehlmann, W. and L. Minder, 1921. Beitrag zum Problem der Sedimentbildung und Besiedlung im Zürichsee. Festschrift Zschokke 11: 3–23.

    Google Scholar 

  14. Giering, B., L. Krienitz, S. J. Casper, T. Pcschke and H. Raidt, 1990. LM- and SEM-observations on the asexual reproduction of Phacotus lendneri CHODAT ( Chlamydophyceae, Phacotaceae). Arch. Protistenkd. 138: 75–88.

    Google Scholar 

  15. Giering, B., L. Krienitz and S. J. Casper, 1992. Zur Taxonomie von Phacotus lenticularis (Ehrenberg) Stein ( Chlamydophyceae, Phacotaceae). Nova Hedwigia 55: 367–380.

    Google Scholar 

  16. Goldyn, R., 1989. Algae in the seston of the middle section of the River Radunia, its trubutaries and dam reservoirs (Northern Poland). Fragm. Florist. Geobot. 34: 201–245.

    Google Scholar 

  17. Hepperle, D. and L. Krienitz, 1996. The extracellular calcification of zoospores of Phacotus lenticularis ( Chlorophyta, Chlamydomonadales). Eut J. Phycol. 31: 11–21.

    Google Scholar 

  18. Kamptner, E., 1950. Uber den Aufbau des Kalkgehäuses von Phacotus lendneri Chod. Osten. Bot. Z. 97: 391–402.

    Google Scholar 

  19. Koschel, R., 1990. Pelagic calcite precipitation and trophic state of hardwater lakes. Arch. Hydrobiol. Beih. Ergebn. Limnol. 33: 713–722.

    Google Scholar 

  20. Koschel, R., J. Benndorf, G. Proft and E Recknagel, 1983. Calcite precipitation as a natural control mechanism of eutrophication. Arch. Hydrobiol. 98: 380–408.

    Google Scholar 

  21. Koschel, R., G. Proft, and H. Raidt, 1987. PhacotusMassenentwicklungen–eine Quelle autochthonen Kalkeintrages in Seen. Limnologica 18: 457–459.

    CAS  Google Scholar 

  22. Koschel, R. and H. Raidt, 1988. Morphologische Merkmale der Phacotus-Hüllen in Hartwasserseen der Mecklenburger Seenplatte. Limnologica 19: 13–25.

    CAS  Google Scholar 

  23. Koschel, R., B. Giering, P. Kasprzak, G. Proft and H. Raidt, 1990. Changes of calcite precipitation and trophic conditions in two stratified hardwater lakes of the Baltic Lake District. Verh. int. Ver. Limnol. 24: 140–145.

    Google Scholar 

  24. Koschel, R. and P. Kasprzak (Red), 1994. Der Tollensesee. Gewässerökologie - Umweltschutz - Wasser-und Fischereiwirtschaft. Kupijai and Prochnow, Berlin, 62 pp.

    Google Scholar 

  25. Koschel, R., P. Kasprzak and L. Krienitz, 1993. Long term effects by reducing of nutrient loading and following food-web manipulation in a stratified Baltic hardwater lake ( Lake Haussee, Germany). Verh. int. Ver. Limnol. 25: 647–651.

    Google Scholar 

  26. Krienitz, L. and E. Hegewald, 1996. Über das Vorkommen von wärmeliebenden Blaualgenarten in einem norddeutschen See. Lauterbornia 26: 55–63.

    Google Scholar 

  27. Krienitz, L., R. Koschel, B. Giering, S. J. Casper. and D. Hepperle, 1993. Phenomenology of organismic calcite precipitation by Phacotus in hardwater lakes and ponds of northeastern Germany. Verh. Int. Ver. Limnol 25. 170–174.

    Google Scholar 

  28. Kristiansen, J., 1959. Flagellates from some Danish lakes and ponds. Dansk. Bot. Ark. 18: 7–81.

    Google Scholar 

  29. Lackey, J. B., 1942. The plankton algae and protozoa of two Tennessee Rivers. Am. Midl. Naturalist 27: 191–202.

    Google Scholar 

  30. Messikomer, E., 1954. Die Algenflora des Zürichsees bei Zürich, Schweiz. Schweiz. Z. Hydrol. 16: 27–63.

    Google Scholar 

  31. Müller, H., 1967. Eine neue qualitative Bestandsaufnahme des Phytoplanktons des Bodensee-Obersee mit besonderer Berücksichtigung der tychoplanktischen Diatomeen. Arch. Hydrobiol. Suppl. 33: 206–236.

    Google Scholar 

  32. Müller, G. and M. Oti, 1981. The occurrence of calcified planktonic green algae in freshwater carbonates. Sedimentology 28: 897902.

    Google Scholar 

  33. Munawar, M. and J. F. Munawar, 1986. The seasonality of phytoplankton in the North American Great Lakes, a comparativ synthesis. Hydrobiologia 138: 85–115.

    Article  Google Scholar 

  34. Munawar, M., J. F. Munawar and L. H. McCarthy, 1987. Phytoplankton ecology of large eutrophie and oligotrophic lakes of North America: Lakes Ontario and Superior. Arch. Hydrobiol. Beih. Ergeb. Limnol. 25: 51–96.

    Google Scholar 

  35. Nygaard, G., 1949. Hydrobiological studies on some Danish ponds and lakes. Kongel. Danske Vidensk. Selsk. Biol. Skr. 7: 1–293.

    Google Scholar 

  36. Paasche, E. and S. Brubak, 1994. Enhanced calcification in the coccolithophorid Emiliania huxleyi ( Haptophyceae) under phosphorus limitation. Phycologia 33: 324–330.

    Google Scholar 

  37. Padisäk, J., 1992. Seasonal succession of phytoplankton in a large shallow lake ( Balaton, Hungary) - a dynamic approach to ecological memory, its possible role and mechanisms. J. Ecol. 80: 217–230.

    Google Scholar 

  38. Padisak, J., L. Krienitz, W. Scheffler, I. Grigorszky and J. Kristiansen

    Google Scholar 

  39. The phytoplankton of Lake Stechlin (in press, this volume). Pavoni, M., 1963. Die Bedeutung des Nannoplanktons im Vergleich

    Google Scholar 

  40. zum Netzplankton. Schweiz. Z. Hydrol. 25: 219–341.

    Google Scholar 

  41. Phillipose, M. T., 1958. Contributions to our knowledge of Indian algae. II: Volvocales, unicellular forms. Proc. Ind. Acad. Sci. 47b: 287–311.

    Google Scholar 

  42. Pocratsky, L. A., 1982. Nutritional, chemical and ultrastructural characterization of the lorica and extracellular mucilage of Phacotus lenticularis ( Phacotaceae, Volvocales) Diss. Univ. Tennessee.

    Google Scholar 

  43. Porter, K. G., 1973. Selective grazing and differential digestion of algae by zooplancton. Nature 244: 179–180.

    Article  Google Scholar 

  44. Proft, G., 1984. Die pelagische Kalzitfällung und der Carbonatgehalt von Sedimenten pleistozäner Seen. Acta hydrochim. hydrobiol. 12: 321–326.

    Article  CAS  Google Scholar 

  45. Rawson, D. S., 1956. Algal indicators of trophic lake types. Limnol. Oceanogr. 1: 18–25.

    Google Scholar 

  46. Riegman, R., A. A. M. Noordeloos and G. C. Cadée, 1992. Phaeocystis blooms and eutrophication of the continental coastal zones of the North Sea. Mar. Biol. 112: 479–484.

    Google Scholar 

  47. Ruttner, F., 1952. Planktonstudien der Deutschen Limnologischen Sunda-Expedition. Arch. Hydrobiol. Suppl. 21: 1–274.

    Google Scholar 

  48. Sieminska, J., 1952. The plankton of the artificial lake at the Roznów dam. Mém. de l’Acad. Pol. Scie. Lettres Sér. B. Scie. Naturelles 18: 109 pp.

    Google Scholar 

  49. Skuja, H., 1948. Taxonomie des Phytoplanktons einiger Seen in Uppland, Schweden. Symb. Bot. Upsal. 9: 1–399.

    Google Scholar 

  50. Skuja, H., 1956. Taxonomische und biologische Studien über das Phytoplankton Schwedischer Binnengewässer. Nov. Act Reg. Soc. Sci. Upsal. Ser. IV. 16: 1–404.

    Google Scholar 

  51. Sladecek, V., 1958. Hydrobiological investigations of a treatment of beet sugar factory’s wastes in an experimental lagoon. Sbornik vus. skolu chem. techn. paliv a vodu: 121–150.

    Google Scholar 

  52. Sommer, U., 1986. The periodicity of phytoplankton in Lake Constance ( Bodensee) in comparison to other deep lakes of central Europe. Hydrobiologia 138: 1–7.

    Google Scholar 

  53. Steinberg, C., 1978. Limnologische Untersuchungen des Ammer-sees. Info.-ber. d. Bayer. Landesamtes f. Wasserwirtschaft 6: 178.

    Google Scholar 

  54. Steinberg, C. and R. Klee, 1983. Röntgenmikroanalyse der Schale einer einzelligen Grünalge: Chemismus einer Phacotus lendneriSchale. Mikrokosmos 72: 170–173.

    Google Scholar 

  55. Steinberg, C., B. Heindel, R. Tille-Backhaus and R. Klee, 1987. Phytoplanktonstudien an langsam fließenden Gewässern: Donau und Vils. Arch. f. Hydrobiol Suppl. 68: 437–456.

    Google Scholar 

  56. TGL 27 885/01, 1982. Fachbereichsstandard Nutzung und Schutz der Gewässer. Stehende Binnengewässer. Klassifizierung. Berlin: Ministerium für Umweltschutz und Wasserwirtschaft der DDR. 16.

    Google Scholar 

  57. Thomas, E. A., 1950. Auffällige biologische Folgen von Sprungschichtneigungen im Zürichsee. Schweiz. Z. f. Hydrol. 12: 1–24.

    Google Scholar 

  58. Uhlmann, D., 1965. Beitrag zur Limnologie extrem nährstoffreicher Flachgewässer I. Sauerstoff. Nährstoffe. Wiss. Z. Karl-MarxUniversität Leipzig 14: 359–411.

    Google Scholar 

  59. Uhlmann, D., 1966. Beitrag zur Limnologie extrem nährstoffreicher Flachgewässer II. Plankton-Massenwechsel. Wiss. Zeitschrift Karl-Marx-Universität Leipzig 15: 373–423.

    Google Scholar 

  60. Utermöhl, H., 1925. Limnologische Phytoplanktonstudien. Arch. Hydrobiol. Suppl. 5, Stuttgart, 527 pp.

    Google Scholar 

  61. Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplanktonmethodik. Mitt. int. Ver. Limnol. 9. 1–38.

    Google Scholar 

  62. Willén, E., 1976. A simplified method of phytoplankton counting. Br. phycol. J. 11. 265–278.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Schlegel, I., Koschel, R., Krienitz, L. (1998). On the occurrence of Phacotus lenticularis (Chlorophyta) in lakes of different trophic state. In: Alvarez-Cobelas, M., Reynolds, C.S., Sánchez-Castillo, P., Kristiansen, J. (eds) Phytoplankton and Trophic Gradients. Developments in Hydrobiology, vol 129. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2668-9_30

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2668-9_30

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5067-0

  • Online ISBN: 978-94-017-2668-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics