Skip to main content

Flagellate algae (Chrysophyceae, Dinophyceae, Cryptophyceae) in 48 high mountain lakes of the Northern and Southern slope of the Eastern Alps: biodiversity, taxa distribution and their driving variables

  • Conference paper
Phytoplankton and Equilibrium Concept: The Ecology of Steady-State Assemblages

Part of the book series: Developments in Hydrobiology ((DIHY,volume 172))

Abstract

Survey samplings on late summer phytoplankton communities were carried out on 48 high mountain lakes located on the Austrian and Italian slopes of the Eastern Alps. The lakes of North Tyrol (A) and South Tyrol (I) were sampled in 2000 as part of the EU project EMERGE (EVK1-CT-1999- 00032). The lakes of Trentino (I) were investigated in other research projects during 1996 and 1997 (Adamello mountain range) and 2000 (catchment of the River Avisio), respectively. The objectives of this paper are: (1) to study taxonomy and biodiversity of Chrysophyceae, Dinophyceae and Cryptophyceae in high altitude lakes of the Eastern Alps; (2) to identify functional flagellate groups characterising lakes with similar habitat properties, (3) to identify the environmental variables driving abundance and distribution of the three selected algal groups, thus contributing to the selection of sensitive bioindicator taxa. The lakes investigated show rather wide morphological, chemical and trophic state gradients. Flagellate algae account for a median relative abundance (R.A.) of 68%. Chrysophyceae are the most important group in terms of biodiversity and R.A.. Special flagellate associations could be related to lake features, like catchment geology, mineralization level and nutrient concentrations. However, the distribution of flagellate algae did not allow a complete geographical separation of the lakes studied in the different districts. Multivariate canonical analyses indicate that the distribution of Chrysophyceae is mainly driven by NO3-N concentration and thermal conditions, while Dinophyceae are driven by a combination of alkalinity, altitude, thermal condition and, less importantly, nutrient concentration. Physical properties of the lakes, such as thermal condition and lake depth, represent the principal driving variables for Cryptophyceae. The responses to the different environmental variables suggest that the three flagellate groups analysed might be used as indicators for environmental changes in high mountain lakes of the Eastern Alps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • A.P.H.A., A.W.W.A., W.P.C.F., 1992. Standard Methods for the examination of water and wastewater. American Public Health Association, Washington DC.

    Google Scholar 

  • Baldi, E., 1932b. Note zoologiche sopra alcuni laghi della Presanella-II. Il Lago Serodoli. Memorie del Museo di Storia Naturale della Venezia Tridentina 1: 167–192.

    Google Scholar 

  • Baldi, E., 1935. I Planctonti del Lagorai. Bollettino della Pesca, Piscicoltura e Idrobiologia, Supplemento 10: 1–47.

    Google Scholar 

  • Barone, R. & L. Naselli-Flores, 2003. Distribution and seasonal dynamics of cryptomonads in Sicilian water bodies. Hydrobiologia 502 ( Dev. Hydrobiol. 172 ): 325–329.

    Google Scholar 

  • Brettum, P., 1989. Alger som indikatorer på vannkvalitet i norske innsjøer. Planteplankton. NIVA Report. 111 pp.

    Google Scholar 

  • Cantonati, M., A. Boscaini, F. Corradini & M. Lazzara, 2002a. Morfometria e idrochimica di laghi d’alta quota del bacino del fiume Avisio (Trentino orientale). Studi Trentini di Scienze Naturali, Acta Biologica 78: 101–116.

    Google Scholar 

  • Cantonati, M., M. Tolotti & M. Lazzara, 2002b. I laghi del Parco Naturale Adamello-Brenta. Documenti del Parco 14, Parco Naturale Adamello-Brenta and Museo Tridentino di Scienze Naturali, Strembo, Italy. 285 pp.

    Google Scholar 

  • Carrera, G., P. Fernandez, J. O. Grimalt, M. Ventura, L. Camarero, J. Catalan, U. Nickus, H. Thies & R. Psenner, 2002. Atmospheric deposition of organochlorine compounds to remote high mountain lakes of Europe. Environ. Sci. Technol. 36: 2581–2588.

    Google Scholar 

  • Cloern, J. E., 1977. Effects of light intensity and temperature on Cryptomonas ovata (Cryptophyceae) growth and nutrient uptake rates. J. Phycol. 13: 389–395.

    CAS  Google Scholar 

  • Dokulil, M., 1988. Seasonal and spatial distribution of cryptophycean species in the deep, stratifying, alpine lake Mondsee and their role in the food web. Hydrobiologia 161: 185–201.

    Article  CAS  Google Scholar 

  • Eloranta, P., 1989. Ecological studies on the ecology of the genus Dinobryon in Finnish lakes. Supplement to Nova Hedwigia 95: 99–109.

    Google Scholar 

  • Gervais, F., 1997. Light-dependent growth, dark survival and glucose uptake by cryptophytes isolated from a freshwater chemocline. J. Phycol. 33: 18–25.

    Article  CAS  Google Scholar 

  • Giussani, G., R. De Bernardi, R. Mosello, I. Origgi & T. Ruffoni, 1986. Indagine limnologica sui laghi alpini d’alta quota. Documenta Ist. ital. Idrobiol. 9: 1–415.

    Google Scholar 

  • Hansen, C. M. E, M. Tolotti, R. Ettinger, H. Thies, D. Tait & R. Psenner, 2002. The application of Geographic Information Science (GIS) for data synthesis and evaluation of remote high mountain lakes in the lake district Tyrol (Austria and Italy). In Pillmann, W. and K. Tochtermann (eds), Environmental Communication in the Information Society, Part 1. ISEP, Vienna. 678 pp.

    Google Scholar 

  • Heinonen, P., 1980. Quantity and composition of phytoplankton in Finnish inland waters. Publications of the Water Research Institute 37, Vesihallitus-National Board of Waters, Finland.

    Google Scholar 

  • Hill, D. R. A., 1991. A revised circumscription of Cryptomonas ( Cryptophyceae) based on examination of Australian strains. Phycologia 30: 170–180.

    Google Scholar 

  • Hill, M. O., R. G. H. Bunce & M. W. Shaw, 1975. Indicator species analysis, a divisive polythetic method of classification and its application to a survey of native pinewood in Scotland. J. Ecol. 63: 597–613.

    Article  Google Scholar 

  • Holen, D. A. & M. E. Boraas, 1996. The mixotrophy in chrysophytes. In: Craig, D., C. D. Sangren, J. P. Smol and J. Kristiansen, (eds), Chrysophyte Algae. Ecology, Phylogeny and Development. University Press, Cambridge: 119–140.

    Google Scholar 

  • Javornikß P., 2001. Freshwater Rhodomonads (Cryptophyceae). Algol. Stud. 102: 93–116.

    Google Scholar 

  • Javornickß, P., 2003. Taxonomic notes on some freshwater planktonic Cryptophyceae based on light microscopy. Hydrobiologia 502 ( Dev. Hydrobiol. 172 ): 271–283.

    Article  Google Scholar 

  • Jeffrey, S. W. & G. F. Humphrey, 1975. New spectrophotometric equations for determining chlorophyll a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochemie und Physiologie der Pflanzen 167: 191–194.

    CAS  Google Scholar 

  • Lepistö, L. & A.-L. Holopainen, 2003. Occurrence of Cryptophyceae and katablepharids in boreal lakes. Hydrobiologia 502 ( Dev. Hydrobiol. 172 ): 307–314.

    Article  Google Scholar 

  • Lorenzen, C. J., 1967. Determination of chlorophyll and phaeopigments: spectrophotometric equations. Limnol. Oceanogr. 12: 543–556.

    Google Scholar 

  • Lund, J. W. G., G. Kipling & E. D. Le Cren, 1958. The inverted microscope method for estimating algae number and statistical basis of estimating by counting. Hydrobiologia 11: 143–170.

    Article  Google Scholar 

  • Mosello, R. & B. M. Wathne, 2000. EMERGE Protocol N. 4 — Chemical analyses of major ions and nutrients. http://ww.mountain-lakes.com.

    Google Scholar 

  • Nauwerck, A., 1966. Beobachtungen über das Phytoplankton klarer Hochgebirgsseen. Schweizerische Zeitschrift für Hydrologie 28: 4–28.

    Google Scholar 

  • Nauwerck, A., 1994. A survey on water chemistry and plankton in high mountain lakes in northern Swedish Lapland. Hydrobiologia 274: 91–100.

    Article  CAS  Google Scholar 

  • Novarino, G., 2003. A companion to the identification of cryptomonad flagellates (Cryptophyceae = Cryptomonadea), Hydrobiologia 502 ( Dev. Hydrobiol. 172 ): 225–270.

    Google Scholar 

  • Novarino, G., I. A. N. Lucas & S. Morrall, 1994. Observaion on the genus Plagioselmis (Chryptophyceae). Cryptogamie, Algologie 15: 87–107.

    Google Scholar 

  • Padisák, J., G. Borics, G. Fehér, I. Grigorszky, I. Oldal, A. Schmidt & Z. Zámbóné-Doma, 2003. Dominant species, functional assemblages and frequency of equilibrium phases in late summer phytoplankton assemblages in Hungarian small shallow lakes. Hydrobiologia 502 ( Dev. Hydrobiol. 172 ): 157–168.

    Google Scholar 

  • Pechlaner, R., 1971. Factors that control the production rate biomass of phytoplankton in high mountain lakes. Mitt. int. Ver. theor. angewan. Limnol. 19: 125–145.

    Google Scholar 

  • Poda, E., 1935. Composizione chimica e proprietà fisico-chimiche dell’acqua dei laghi alpini del Lagorai. Bollettino della Pesca, Piscicoltura e Idrobiologia, Supplemento, 10: 447–457.

    Google Scholar 

  • Psenner, R., 1988. Alkalinity generation in a soft-water lake: water- shed and in-lake processes. Limnol. Oceanogr. 33: 1463–1475.

    Google Scholar 

  • Psenner, R., 1998. Versauerung von Hochgebirgsseen 1985–1995. Bundesministerium für Land-und Forstwirtschaft, Wien. 134 pp.

    Google Scholar 

  • Psenner, R. & J. Catalan, 1994. Chemical composition of lakes in crystalline basins: a combination of atmospheric deposition, geologic background, biological activity and human action. In: Margalef, R. (ed.), Limnology Now: A Paradigm of Planetary Problems, Elsevier Science, Amsterdam: 255–314.

    Google Scholar 

  • Pugnetti, A. & R. Bettinetti, 1995. The phytoplankton communities of two acid sensitive alpine lakes (Lakes Paione, Central Alps, Italy). Mem. Ist. ital. Idrobiol. 53: 39–52.

    Google Scholar 

  • Reynolds. C. S., 1997. Vegetation processes in the pelagic: a model for ecosystem theory. In: Kinne, O. (ed.), Excellence in Limnology 9: 371 pp.

    Google Scholar 

  • Reynolds. C. S., V. Huszar, C. Kruk, L. Naselli-Flores & S. Melo, 2002. Toward a functional classification of the freshwater phytoplankton. J. Plankton Res. 24: 417–428.

    Article  Google Scholar 

  • Rosén, G., 1981. Phytoplankton indicators and their relations to certain chemical and physical factors. Limnologica 13: 263–290.

    Google Scholar 

  • Rott, E., 1981. Some results from phytoplankton counting intercalibrations. Schweizerische Zeitschrift für Hydrologie 43: 34–62.

    Google Scholar 

  • Rott, E., 1988. Some aspects of the seasonal distribution of flagellates in mountain lakes. Hydrobiologia 161: 159–170.

    Article  Google Scholar 

  • Sandgren, C. D., 1988. The ecology of chrysophyte flagellates: their growth and perennation strategies as freshwater phytoplankton. In Sandgren, C. D. (ed.), Growth and Reproductive Strategies of Freshwater Phytoplankton. Cambridge University press: 9–104.

    Google Scholar 

  • Schindler, D. W., K. H. Mills, D. F. Malley, D. L. Findlay, J. A. Shearer, I. J. Davies, M. A. Turner, G. A. Linsey & D. R. Cruikshank, 1985. Long-term ecosystem stress: the effect of years of experimental acidification on a small lake. Science 228: 1395–1401.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, R. & R. Psenner, 1992. Climate changes and anthropogenic impacts as causes for pH fluctuation in remote alpine lakes. Documenta Ist. ital. Idrobiol. 32: 31–57.

    Google Scholar 

  • Schneider, U., 1981. Phytoplankton und Primärproduktion in einigen Hochgebirgsseen des Kantons Tessin. Ph.D. Thesis, University Bern. 152 pp.

    Google Scholar 

  • Shannon, C. E. and W. Weaver, 1949. The mathematical theory of communication. University of Illinois Press, Urbana. 117 pp.

    Google Scholar 

  • Sommer, U., J. Padisák, C. S. Reynolds & P. Jusász-nagy, 1993. Hutchinson’s heritage: the diversity-disturbance relationship in phytoplankton. Hydrobiologia 249: 1–7.

    Article  Google Scholar 

  • Stella, E., 1931. Intorno ad alcuni laghi alpini del Trentino, dell’Ampezzano e dell’Alto Adige. Memorie del Museo di Storia Naturale della Venezia Tridentina 1: 45–46.

    Google Scholar 

  • Straškrabová, V. & E. Stuchlík, 2000. EMERGE Protocol N. 7–Sampling of the plankton food web. http://www.mountainlakes.com.

    Google Scholar 

  • Tardio, M., M. Tolotti, G. Novarino & M. Cantonati, 2003. Ecological and taxonomic observations on the flagellate algae characterising four years of enclosure experiments in Lake Tovel (Southern Alps). Hydrobiologia 502 ( Dev. Hydrobiol. 172 ): 285–296.

    Article  Google Scholar 

  • ter Braak, C. J. F. & P. Smilauer, 1998. CANOCO reference manual and user’s guide to Canoco for Windows: software for canonical community ordination (version 4). Microcomputer Power, Ithaca, New York, U.S.A. 195 pp.

    Google Scholar 

  • Thies, H., 2000. The importance of internal alkalinity generation for an acidified mountain lake as revealed by mass budgets. Silva Gabreta 4: 97–104.

    Google Scholar 

  • Thies, H., U. Nickus, C. Arnold & R. Psenner, 2002. A hydrological tracer experiment with LiCl in a high mountain lake. Hydrol. Proc. 16: 2329–2337.

    Article  Google Scholar 

  • Thies, H., U. Nickus, C. Arnold, R. Schnegg, A. Wille & R. Psenner, 2000. Biogeochemistry of a high mountain lake in the Austrian Alps. Int. Ver. theor. angewan. Limnol.: Verh. 27: 517–520.

    CAS  Google Scholar 

  • Tilzer, M. & K. Schwarz, 1976. Seasonal and vertical patterns of phytoplankton light adaptation in a high mountain lake. Archiv für Hydrobiol. 44: 488–504.

    Google Scholar 

  • Tolotti, M., 2001. Phytoplankton and littoral epilithic diatoms in high mountain lakes of the Adamello-Brenta Regional Park ( Trentino, Italy) and their relation to trophic status and acidification risk. J. Limnol. 60: 171–188.

    Google Scholar 

  • Tomasi, G., 1962. Origine, distribuzione, catasto e bibliografia dei laghi del Trentino. Studi Trentini di Scienze Naturali 1–2: 1–333.

    Google Scholar 

  • Utermöhl, H., 1958. Zur Vervollkommung der quantitative Phytoplankton-Methodik. Mitt. int. Ver. theor. angewan. Limnol. 9: 1–38.

    Google Scholar 

  • Vollenweider, R. A. & J. Kerekes, 1982. Eutrophication of Waters, Monitoring, Assessment and Control. OECD, Paris. 154 pp.

    Google Scholar 

  • Willén, E., 2003. Dominance patterns of planktonic algae in Swedish forest lakes. Hydrobiologia 502 ( Dev. Hydrobiol. 172 ): 315–324.

    Article  Google Scholar 

  • Willén, E., S. Hajdu & Y. Pejler, 1990. Summer phytoplankton in 73 nutrient-poor Swedish lakes–classification, ordination and choice of long-term monitoring objects. Limnologica 20: 217– 227.

    Google Scholar 

  • Zucchelli, M., 1952. Osservazioni morfologiche e fisiche su alcuni laghi del Gruppo Adamello-Presanella. Studi Trentini di Scienze Naturali 29: 142–170.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Tolotti, M., Thies, H., Cantonati, M., Hansen, C.M.E., Thaler, B. (2003). Flagellate algae (Chrysophyceae, Dinophyceae, Cryptophyceae) in 48 high mountain lakes of the Northern and Southern slope of the Eastern Alps: biodiversity, taxa distribution and their driving variables. In: Naselli-Flores, L., Padisák, J., Dokulil, M.T. (eds) Phytoplankton and Equilibrium Concept: The Ecology of Steady-State Assemblages. Developments in Hydrobiology, vol 172. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2666-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2666-5_27

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6433-2

  • Online ISBN: 978-94-017-2666-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics