Skip to main content

A companion to the identification of cryptomonad flagellates (Cryptophyceae = Cryptomonadea)

  • Conference paper
Phytoplankton and Equilibrium Concept: The Ecology of Steady-State Assemblages

Part of the book series: Developments in Hydrobiology ((DIHY,volume 172))

Abstract

This paper provides an annotated synopsis of cryptomonad morphology, ultrastructure, taxonomy and nomenclature. Its aim is to aid cryptomonad identification down to whatever taxonomic level is realistically possible, based on currently used taxonomic criteria. It is intended as a ‘companion’, i.e. a tool to be used in conjunction with the existing literature, rather that a self-contained guide making it possible to identify all known cryptomonads. A nominalistic philosophy is adopted as far as possible, whereby taxa are considered to be acceptable as long as their names have been published in accordance with the nomenclatural rules and prevailing taxonomic practice. A new combination is proposed, Pyrenomonas duplex comb. nov. (basyonym: Rhodomonas duplex Hill & Wetherbee). Although identification keys are provided whenever possible, an empirical, multilateral approach is followed with a view to facilitating cryptomonad identification by non-specialists using only what equipment is available to them at any one time. This approach is based on the fact that different degrees of taxonomic resolution can be achieved by using different combinations of observation techniques. Identification rationales are based on the following techniques (in ascending order of complexity, time-consumption, and financial cost): light microscopy, scanning electron microscopy, and transmission electron microscopy, supplemented by freeze-fracture investigations and spectrophotometry. Information given under any one section is cross-referenced to other relevant sections by means of italicized links. It is envisaged that this paper will constitute the core of an interactive identification tool to be published electronically on the Internet in due course. Amongst the factors contributing to the difficulties of cryptomonad identification, the most important appear to be the following: the state of flux of cryptomonad classification systems; typification difficulties, especially the historical disregard for the type method and the incorrect belief that preserved type materials of cryptomonads do not exist; difficulties in relating ‘classical’ taxa and newer ultrastructural descriptions; the description of monospecific genera; inadequate methodology; and the long-standing gap between ecological studies on the one hand and cryptomonad taxonomy and systematics on the other. A wider use of scanning electron microscopy is advocated wherever possible because it appears to be a highly informative and cost-effective tool for discovering, describing, and mapping cryptomonad biodiversity. It is also to be hoped that collaborative projects between ecologists and taxonomic specialists will start to fluorish soon.

The UK Crown’s right to retain a non-exclusive, royalty free license in and to any copyright is acknowledged.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnold, C. A., 1948. Classification of the gymnosperms from the viewpoint of palaeobotany. Bot. Gaz. 110: 2–12.

    Google Scholar 

  • Barone, R. & L. Naselli-Flores, 2003. Distribution and seasonal dynamics of cryptomonads in Sicilian water bodies. Hydrobiologia 502 ( Dev. Hydrobiol. 172 ): 325–329.

    Google Scholar 

  • Beers, J. R., F. M. H. Reid & G. L. Stewart, 1980. Microplankton population structure in Southern California nearshore waters in late spring. Mar. Biol. 60: 209–226.

    Google Scholar 

  • Ben Ali, A., R. De Baere, G. Van der Auwera, R. De Wachter & Y. Van de Peer, 2001. Phylogenetic relationships among algae based on complete large-subunit rRNA sequences. Int. J. Syst. Evol. Microbiol. 51: 737–749.

    Google Scholar 

  • Bérard-Therriault, L., M. Poulin & L. Bossé, 1999. Guide d’identification du phytoplancton marin de l’estuaire et du golfe du Saint-Laurent incluant également certains protozoairs. Publication spéciale canadienne des sciences halieutiques et aquatiques 128: 387 pp.

    Google Scholar 

  • Bicudo, C. E. d. M., 1989. Validation of the generic name Protocryptomonas ( Cryptophyceae: Cryptomonadaceae). Taxon 38: 82–83.

    Google Scholar 

  • Bicudo, C. E. d. M. & G. Tell, 1988. Pseudocryptomonas, a new genus of Cryptophyceae from southern Brazil. Nova Hedwigia 46: 407–411.

    Google Scholar 

  • Booth, B. C., J. Lewin & R. E. Norris, 1982. Nanoplankton species predominant in the subarctic Pacific in May and June 1978. Deep-Sea Res. 29: 185–200.

    Article  Google Scholar 

  • Borics, G., B. Tóthmérész, I. Grigorszky, J. Padisák, G. Várbíró & S. Szabó, 2003. Algal assemblage types of bog-lakes in Hungary and their relation to water chemistry, hydrological conditions and habitat diversity. Hydrobiologia 502 (Dev. Hydrobiol. 172): 145– 155.

    Google Scholar 

  • Braarud, T., 1935. The ‘Øst’ expedition to the Denmark Strait 1929. II. The phytoplankton and its conditions of growth (including some qualitative data from the Arctic in 1930). Hvalrådets Skrifter 10: 1–173.

    Google Scholar 

  • Brett, S. J., L. Perasso & R. Wetherbee, 1994. Structure and development of the cryptomonad periplast–a review. Protoplasma 181: 106–122.

    Article  Google Scholar 

  • Brett, S. J. & R. Wetherbee, 1986. A comparative study of periplast structure in Cryptomonas cryophila and C. ovata ( Cryptophyceae ). Protoplasma 131: 23–31.

    Google Scholar 

  • Butcher, R. W., 1952. Contributions to our knowledge of the smaller marine algae. J. mar. biol. Ass. U.K. 52: 175–191.

    Google Scholar 

  • Butcher, R. W., 1967. An introductory account of the smaller algae of British coastal waters. Part IV: Cryptophyceae. Fishery Investigations London Ser. 4: 1–54.

    Google Scholar 

  • Bütschli, O., 1884. Erster band. Protozoa. II Abteilung: Mastigophora. In Bronn H. G. (ed.), Klassen und Ordnungen des Thier-Reichs 1883–1887. Leipzig und Heidelberg: 617–1097.

    Google Scholar 

  • Büttner, J., 1911. Die farbigen Flagellaten des Kieler Hafens. Wissenschaftliche Meeresuntersuchungen, Abteilung Kiel, N. F. 12: 121–132.

    Google Scholar 

  • Carter, N., 1937. New or interesting algae from brackish water. Archiv für Protistenkunde 90: 1–68.

    Google Scholar 

  • Castro, A. A. J. d., C. E. d. M. Bicudo & D. d. C. Bicudo, 1991. Criptógamos do Parque Estadual das Fontes do Ipiranga, Sao Paulo, SP. Algas, 2: Cryptophyceae. Hoehnea 18: 87–106.

    Google Scholar 

  • Cavalier-Smith, T., M. Allsopp & E. E. Chao, 1994. Chimeric conundra–Are nucleomorphs and chromists monophyletic or polyphyletic. Proc. Natl Acad. Sci. U.S.A. 91: 11368–11372.

    Google Scholar 

  • Cavalier-Smith, T., J. A. Couch, K. E. Thorsteinsen, P. Gilson, J. A. Deane, D. R. A. Hill & G. I. McFadden, 1996. Cryptomonad nuclear and nucleomorph 18S rRNA phylogeny. Eur. J. Phycol. 31: 315–328.

    Google Scholar 

  • Chang, F. H., 1983. Winter phytoplankton and microzooplankton populations off the coast of Westland, New Zealand, 1979. New Zealand J. mar. Freshwat. Res. 17: 279–304.

    Google Scholar 

  • Christensen, T., 1967. Two new families and some new names and combinations in the algae. Blumea 15: 91–91.

    Google Scholar 

  • Christensen, T., 1978. Annotations to a textbook of phycology. Botanisk Tidsskrift 73: 65–70.

    Google Scholar 

  • Christensen, T., 1980. Algae. A taxonomic survey. Vol I. Aio Tryk as, Odense.

    Google Scholar 

  • Clay, B. L. & P. Kugrens, 1999a. Characterization of Hemiselmis amylosa sp. nov. and phylogenetic placement of the blue-green cryptomonads H. amylosa and Falcomonas daucoides. Protist 150: 297–310.

    Article  PubMed  CAS  Google Scholar 

  • Clay, B. & P. Kugrens, 1999b. Systematics of the enigmatic kathablepharids, including EM characterization of the type species, Kathablepharis phoenikoston, and new observations on K. remigera comb. nov. Protist 150: 43–59.

    Article  PubMed  CAS  Google Scholar 

  • Clay, B. L., P. Kugrens & R. E. Lee, 1999. A revised classification of Cryptophyta. Bot. J. linn. Soc. 131: 131–151.

    Google Scholar 

  • Conn, H. W., 1905. A preliminary report on the Protozoa of the fresh waters of Connecticut. State Geological and Natural History survey of Connecticut 1: 1–69.

    Google Scholar 

  • Conrad, W., 1939. Notes protistologiques. XII.- Sur quatre Cryptomonadines rouges. Bulletin du Musée royal d’Histoire naturelle de Belgique 15: 1–5.

    Google Scholar 

  • Conrad, W. & H. Kufferath, 1954. Recherches sur les eaux saumâtres des environs de Lilloo. II. Partie descriptive. Algues et protistes. Considérations écologiques. Mémoires de l’Institute royal des Sciences Naturelle de Belgique 127: 1–346.

    Google Scholar 

  • Cronberg, G., 1982. Phytoplankton changes in Lake Trummen induced by restoration. Long-term whole-lake studies and food-web experiments. Folia Limnologica Scandinavica 18: 1–119.

    Google Scholar 

  • Czosnowsky, J., 1948. Materialy do flory wiciowcow polski. Poznanskie Towarzystwo Przyjaciol Nauk Wydzial matematycznoprzyyrodniczy, Prace Komisji Biologicznej 11: 1–40.

    Google Scholar 

  • Davis, B. M., 1894. Notes on the life-history of a blue-green motile cell. Bot. Gazette 19: 96–102.

    Google Scholar 

  • Deane, J. A., D. R. A. Hill, S. J. Brett & G. I. McFadden, 1998. Hanusia phi gen. et sp. nov. (Cryptophyceae): characterization of ‘Cryptomonas sp. Phi’. Eur. J. Phycol. 33: 149–154.

    Google Scholar 

  • Deane, J. A., I. M. Strachan, G. W. Saunders, D. R. A. Hill & G. I. McFadden, 2002. Cryptomonad evolution: Nuclear 18S rRNA phylogeny versus cell morphology and pigmentation. J. Phycol. 38: 1236–1244.

    Article  CAS  Google Scholar 

  • Deflandre, G., 1938. Les corpuscules biréfringents des Ciliés et des cryptomonadines. Bullettin de la Société Française de Microscopie 7: 110–129.

    CAS  Google Scholar 

  • Domingos, P. & M. Menezes, 1998. Taxonomic remarks on planktonic phytoflagellates in a hypertrophic tropical lagoon ( Brazil ). Hydrobiologia 370: 297–313.

    Google Scholar 

  • Douglas, S. E., 1992. Eukaryote-Eukaryote Endosymbioses–Insights from studies of a cryptomonad alga. Biosystems 28: 57–68.

    Article  PubMed  CAS  Google Scholar 

  • Douglas, S. E., C. A. Murphy, D. F. Spencer & M. W. Gray, 1991. Cryptomonad algae are evolutionary chimeras of 2 phylogenetically distinct unicellular eukaryotes. Nature 350: 148–151.

    Article  PubMed  CAS  Google Scholar 

  • Dragesco, J.,1951. Sur la structure des trichocystes du flagellé cryptomonadine Chilomonas paramecium. Bulletin de Microscopie Appliquée 2e série, 1: 172–175.

    Google Scholar 

  • Dujardin, F., 1841. Histoire naturelle des Zoophytes. Infusoires, comprenant la physiologie et la classification de ces Animaux, et la maniere de les etudier a l’aide du microscope. Librairie Encyclopedique de Roret, Paris. 295 pp.

    Google Scholar 

  • Edmonson, C. H., 1906. Protozoa of Iowa. Proc. Davenport Acad. Sci. 11: 1–124.

    Google Scholar 

  • Ehrenberg, C. G., 1831a. Animalia Evertebrata exclusis Insectis. Series Prima cum Tabularum Decade Prima. In Hemprich, F. & C. G. Ehrenberg (eds), Symbolae Physicae seu Icones et Descriptiones Animalium Evertebratorum sepositis Insectis. Berolini ex Officina Academica, Berlin: 1–126.

    Google Scholar 

  • Ehrenberg, C. G., 1831b. Über die Entwicklung und Lebensdauer der Infusionsthiere: nebst ferneren Beiträgen zu einer Vergleichung ihrer organischen Systeme. Abhandl. Akad. Wissens. Berlin 1832: 1–154.

    Google Scholar 

  • Ehrenberg, C. G., 1838. Die Infusionsthierschen als volkommene Organismen. Ein Blick in das tiefere organische Leben der Natur. Leopold Voss, Leipzig. 548 pp. + atlas

    Google Scholar 

  • Erata, M. & M. Chihara, 1989. Re-Examination of Pyrenomonas and Rhodomonas (Class Cryptophyceae) through ultrastructural survey of red pigmented cryptomonads. Bot. Magazine-Tokyo 102: 429–443.

    Google Scholar 

  • Eriksson, S., C. Sellei & K. Wallström, 1977. The structure of the plankton community of the Öregrundsgrepen (Souhwest Bothnian Sea). Helgolander Wiss. Meeresunters. 30: 582–597.

    Google Scholar 

  • Ettl, H., 1980. Die Zweiteiligkeit der Chromatophoren bei Cryptomonaden. Plant Syst. Evol. 135: 227–234.

    Google Scholar 

  • Faust, M. A., 1974. Structure of the periplast of Cryptomonas ovata var. palustris. J. Phycol. 9: 489–495.

    Google Scholar 

  • Findenegg, I., 1971. Die Produkmonsleistungen einiger planktischer Algenarten in ihren naturlichen Milieu. Archiv für Hydrobiol. 69: 272–293.

    Google Scholar 

  • Fisch, C., 1885. Untersuchungen über einige Flagellaten und verwandte Organismen. Zeitschrift fur Wissenschaftliche Zool. 42: 47–125.

    Google Scholar 

  • Fresenius, G., 1858. Beiträge zur Kenntniss Mikroskopicher Organismen. Abhandlungen herausgegeben von der Senckerbergischen Naturforschenden Gesellschaft 2: 211–242.

    Google Scholar 

  • Fromentel, E. D., 1874. Etudes sur les microzoaires ou Infusoires proprement dits. Masson, Paris. 364 pp.

    Google Scholar 

  • Gantt, E., 1971. Micromorphology of the periplast of Chroomonas sp. J. Phycol. 7: 177–184.

    Google Scholar 

  • Geitler, L., 1922. Die Mikrophyten-Biocoenose der FontinalisBestände des Lunzer Untersees und ihre Abhängigkeit vom Lichts. Int. Rev. Hydrobiol. 10: 683–691.

    Google Scholar 

  • Geitler, L., 1924. Chroomonas caudata, nov. spec. Österreichische Botanische Zeitschrift 73: 246–247.

    Google Scholar 

  • Gervais, F., 1997. Cryptomonas undulata spec. nov., a new freshwater cryptophyte living near the chemocline. Nova Hedwigia 65: 353–364.

    Google Scholar 

  • Gillot, M. A. & S. P. Gibbs, 1980. The cryptomonad nucleomorph: Its ultrastructure and evolutionary significance. J. Phycol. 16: 558–568.

    Google Scholar 

  • Grim, J. N. & L. A. Staehelin, 1982. Ejectisomes of Chilomonas paramecium–a freeze-fracture study of their IMPs and docking sites. J. Protozool. 29: 474–474.

    Google Scholar 

  • Grim, J. N. & L. A. Staehelin, 1984. The ejectisomes of the flagellate Chilomonas paramecium–visualization by freeze-fracture and isolation techniques. J. Protozool. 31: 259–267.

    PubMed  CAS  Google Scholar 

  • Gromov, B. V., K. A. Mamkaeva & O. V. Gavrilova, 1998. Ultrastructure of the flagella of Campylomonas reJiexa ( Cryptophyceae equals Cryptomonadea ). Nova Hedwigia 66: 197–204.

    Google Scholar 

  • Hada, Y., 1974. The Flagellata examined from polluted water of the Inland Sea, Setonaikai. Bull. Plankton Soc. Japan 20: 112–125.

    Google Scholar 

  • Haigh, R., F. J. R. Taylor & T. F. Sutherland, 1992. Phytoplankton ecology of Sechelt Inlet, a fjord system of the British Columbia coast. 1. General features of the nanoplankton and microplankton. Mar. Ecol. Prog. Ser. 89: 117–134.

    Google Scholar 

  • Halldal, P., 1953. Phytoplankton investigations from Weather Ship M in the Norwegian Sea, 1948–49 (including observations during the ‘Armauer Hansen’ cruise, July 1949. Hvalrådets Skrifter 38: 1–91.

    Google Scholar 

  • Hansgirg, A., 1885. Anhang zu meiner Abhandlung–Ueber den Polymorphismus der Algen. Botanisches Centralblatt 23: 229– 233.

    Google Scholar 

  • Hansmann, P., H. Falk, U. Scheer & P. Sitte, 1986. Ultrastructural localization of DNA in two Cryptomonas species by use of a monoclonal DNA antibody. Eur. J. Cell Biol. 42: 152–160.

    Google Scholar 

  • Hansmann, P., H. Falk & P. Sitte, 1985. DNA in the nucleomorph of Cryptomonas demonstrated by DAPI fluorescence. Zeitschrift für Naturforschung 40c: 933–955.

    Google Scholar 

  • Hecky, R. E. & H. J. Kling, 1981. The phytoplankton and protozooplankton of the euphotic zone of Lake Tanganyika: Species composition, biomass, chlorophyll content, and spatio-temporal distribution. Limnol. Oceanogr. 26: 564–564.

    Google Scholar 

  • Heywood, P., 1988. Ultrastructure of Chilomonas paramecium and the phylogeny of the Cryptoprotists. BioSystems 21: 293–298.

    Article  PubMed  CAS  Google Scholar 

  • Hibberd, D. J., A. D. Greenwood & H. B. Griffiths, 1971. Observations on the ultrastructure of the flagella and periplast in the Cryptophyceae. British Phycol. J. 6: 61–72.

    Google Scholar 

  • Hill, D. R. A., 1991a. A revised circumscription of Cryptomonas ( Cryptophyceae) based on examination of Australian strains. Phycologia 30: 170–180.

    Google Scholar 

  • Hill, D. R. A., 1991b. Chroomonas and other blue-green cryptomonads. J. Phycol. 27: 133–145.

    Google Scholar 

  • Hill, D. R. A., 1992a. Chroomonas vectensis Carter (Cryptophyceae). Baltic Sea identification Sheet no. 6. Ann. Bot. Fenn. 29: 161–162.

    Google Scholar 

  • Hill, D. R. A., 1992b. Teleaulax amphioxeia (Conrad) Hill, comb. nov. (Cryptophyceae). Baltic Sea Identification Sheet no. 13. Ann. Bot. Fenn. 29: 175–176.

    Google Scholar 

  • Hill, D. R. A. & K. S. Rowan, 1989. The biliproteins of the Cryptophyceae. Phycologia 28: 455–463.

    Article  Google Scholar 

  • Hill, D. R. A. & R. Wetherbee, 1986. Proteomonas sulcata gen. et sp. nov. (Cryptophyceae), a cryptomonad with two morphologically distinct and alternating forms. Phycologia 25: 521–543.

    Google Scholar 

  • Hill, D. R. A. & R. Wetherbee, 1988. The structure and taxonomy of Rhinomonas pauca gen. et sp. nov. ( Cryptophyceae ). Phycologia 27: 355–365.

    Google Scholar 

  • Hill, D. R. A. & R. Wetherbee, 1989. A reappraisal of the genus Rhodomonas ( Cryptophyceae ). Phycologia 28: 143–158.

    Google Scholar 

  • Hill, D. R. A. & R. Wetherbee, 1990. Guillardia theta gen. et sp. nov. (Cryptophyceae). Can. J. Bot. 68: 1873–1876.

    Google Scholar 

  • Hoef-Emden, K., B. Marin & M. Melkonian, 2002. Nuclear and nucleomorph SSU rDNA phylogeny in the cryptophyta and the evolution of cryptophyte diversity. J. Mol. Evol. 55: 161–179.

    Google Scholar 

  • Huber-Pestalozzi, G., 1950. Das Phytoplankton des Süßwassers. 3. Teil. Cryptophyceen, Chloromonadinen, Peridineen. E. Schweizerbart’sche Verlagsbuchhandlung ( Erwin Nägele ), Stuttgart. 310 pp.

    Google Scholar 

  • Ilmavirta, V., 1975. Diel periodicity in the phytoplankton of the oligotrophic Lake Pääjärvi, Southern Finland. II. Late summer phytoplankton biomass. Ann. Bot. Fenn. 12: 37–44.

    Google Scholar 

  • Javornický, P., 1967. Some interesting algal flagellates. Folia Geobotanica et Phytotaxonomica 2: 43–67.

    Google Scholar 

  • Javornický, P., 2003. Taxonomic notes on some freshwater planktonic Cryptophyceae based on light microscopy. Hydrobiologia 502 ( Dev. Hydrobiol. 172 ): 271–283.

    Google Scholar 

  • Javornický, P. & F. Hindák, 1970. Cryptomonas frigoris spec. nova (Cryptophyceae), the new cyst-forming flagellate from the snow of the High Tatras. Biológia (Bratislava) 25: 241–250.

    Google Scholar 

  • Jones, E. E., 1974. The Protozoa of Mobile Bay, Alabama. University of South Alabama Monographs 1: 1–113.

    Google Scholar 

  • Joyon, L., 1963. Contribution à l’étude cytologique de quelques Protozoaires flagellés. Annales de la Faculté de Sciences de l’Université de Clermont 22 (Biologie Animale 1er Fasc.): 1–96.

    Google Scholar 

  • Karsten, G., 1898. Rhodomonas balica N. g. et sp. Wiss. Meeresunters. Abteilung Kiel, N. F. 3: 15–17.

    Google Scholar 

  • Kent, W. S., 1880–82. A Manual of the Infusoria. Vols I–III. David Bogue, London.

    Google Scholar 

  • Klaveness, D., 1985. Classical and modern criteria for determining species of Cryptophyceae. Bull. Plankton Soc. Japan 32: 111– 123.

    Google Scholar 

  • Klaveness, D., 1988. Ecology of the Cryptomonadida: a first review. In Sandgren, C. D. (ed.), Growth and Reproductive Strategies of Freshwater Phytoplankton. Cambriddge University Press, Cambridge: 105–133.

    Google Scholar 

  • Klaveness, D., 1988/1989. Biology and ecology of the Crypto- phyceae: status and challenges. Biol. Oceanogr. 6: 257–270.

    Google Scholar 

  • Kristiansen, J. & A. Kristiansen, 1999. A new species of Chroomonas ( Cryptophyceae) living inside the submarine ikaite columns in the Ikkafjord, Southwest Greenland, with remarks on its ultrastructure and ecology. Nordic J. Bot. 19: 747–758.

    Google Scholar 

  • Kugrens, P., B. L. Clay & R. E. Lee, 1999. Ultrastructure and systematics of two new freshwater red cryptomonads, Storeatula rhinosa, sp nov and Pyrenomonas ovalis, sp nov. J. Phycol. 35: 1079–1089.

    Article  Google Scholar 

  • Kugrens, P. & R. E. Lee, 1987. An ultrastructural survey of cryptomonad periplasts using quick-freezing freeze-fracture techniques. J. Phycol. 23: 365–376.

    Article  Google Scholar 

  • Kugrens, P. & R. E. Lee, 1990. Ultrastructural evidence for bacterial incorporation and mixotrophy in the photosynthetic cryptomonad Chroomonas pochmanni (Cryptomonadida). J. Protozool. 37: 263–267.

    Google Scholar 

  • Kugrens, P. & R. E. Lee, 1991. Organization of cryptomonads. In Patterson D. J. & J. Larsen (eds), The biology of free-living heterotrophic flagellates. Clarendon Press, Oxford: 219–233.

    Google Scholar 

  • Kugrens, P., R. E. Lee & R. A. Andersen, 1986. Cell form and surface patterns in Chroomonas and Cryptomonas cells (Crypto-phyta) as revealed by scanning electron microscopy. J. Phycol. 22: 512–525.

    Google Scholar 

  • Kugrens, P., R. E. Lee & R. A. Andersen, 1987. Ultrastructural variations in cryptomonad flagella. J. Phycol. 23: 511–518.

    Article  Google Scholar 

  • Kuylenstierna, M. & B. Karlson, 1994. Seasonality and composition of pico-and nanoplanktonic cyanobacteria and protists in the Skagerrak. Bot. Mar. 37: 17–33.

    Google Scholar 

  • Lack, T. J., 1971. Quantitative studies on the phytoplankton of the rivers Thames and Kennet at Reading. Freshwat. Biol. 1: 213– 224.

    Google Scholar 

  • Lackey, J. B. & E. W. Lackey, 1963. Microscopic algae and protozoa in the waters near Plymouth in August 1962. J. mar. biol. Ass. U.K. 43: 797–805.

    Google Scholar 

  • Lee, R. E. & P. Kugrens, 1986. The occurrence and structure of flagellar scales in some fresh-water Cryptophytes. J. Phycol. 22: 549–552.

    Article  Google Scholar 

  • Lepistö, L. & A.-L. Holopainen, 2003. Occurrence of Cryptophyceae and katablepharids in boreal lakes. Hydrobiologia 502 ( Dev. Hydrobiol. 172 ): 307–314.

    Google Scholar 

  • Liaud, M. F., U. Brandt, M. Scherzinger & R. Cerff, 1997. Evolutionary origin of cryptomonad microalgae: two novel chloroplast/cytosol-specific GAPDH genes as potential markers of ancestral endosymbiont and host cell components. J. Mol. Evol. 44: S28–S37.

    Article  PubMed  CAS  Google Scholar 

  • Lucas, I. A. N., 1968. Three new species of the genus Cryptomonas. British Phycol. Bull. 3: 535–541.

    Google Scholar 

  • Lucas, I. A. N., 1970a. Observations on the ultrastructure of the Cryptophyceae. I. The genus Cryptomonas. J. Phycol. 6: 30–38.

    Google Scholar 

  • Lucas, I. A. N., 1970b. Observations on the ultrastructure of representatives of the genera Hemiselmis and Chroomonas. British Phycol. J. 5: 29–37.

    Google Scholar 

  • Lucas, I. A. N., 1982. Observations on the fine structure of the Cryptophyceae. II. The eyespot. British Phycol. J. 17: 13–19.

    Google Scholar 

  • Ludwig, M. & S. P. Gibbs, 1985. DNA is present in the nucleomorph of cryptomonads: Further evidence that the chloroplast evolved from a eukaryotic endosymbiont. Protoplasma 127: 9–20.

    Google Scholar 

  • Maerz, M., S. Rensing, G. L. Igloi & U. G. Maier, 1992. Evolutionary analysis of the plastid-encoded gene for the alpha subunit of the DNA-dependent RNA-polymerase of Pyrenomonas salina ( Cryptophyceae ). Current Gen. 22: 479–482.

    Google Scholar 

  • Maier, U. G., 1992. The 4 genomes of the alga Pyrenomonas salina ( Cryptophyta ). BioSystems 28: 69–73.

    Google Scholar 

  • Maier, U. G. & P. Sitte, 1994. Cryptomonad evolution –- insights into a eucyte within a eucyte. Endocytobiosis and Cell Res. 10: 129–135.

    Google Scholar 

  • Marin, B., M. Klingberg & M. Melkonian, 1998. Phylogenetic relationships among the Cryptophyta: analyses of nuclear-encoded SSU rRNA sequences support the monophyly of extant plastid-containing lineages. Protist 149: 265–276.

    Article  PubMed  CAS  Google Scholar 

  • McFadden, G. I., P. R. Gilson & D. R. A. Hill, 1994. Goniomonas–Ribosomal-RNA sequences indicate that this phagotrophic flagellate is a close relative of the host component of cryptomonads. Eur. J. Phycol. 29: 29–32.

    Google Scholar 

  • Mayr, E., 1974. The challenge of diversity. Taxon 23: 3–9.

    Article  Google Scholar 

  • Menezes, M. & G. Novarino, 2003. How diverse are planktonic cryptomonads in Brazil? Advantages and difficulties of a taxonomic-biogeographical approach. Hydrobiologia 502 ( Dev. Hydrobiol. 172 ): 297–306.

    Google Scholar 

  • Meyer, S. R. & R. N. Pienaar, 1984. The microanatomy of Chroomonas africana n. sp. (Cryptophyceae). South African J. Bot. 3: 306–319.

    Google Scholar 

  • Meyer, S. R. & R. N. Pienaar, 1987. The taxonomic implications of the ultrastructure and cell division of a stigma-containing Chroomonas sp. (Cryptophyceae) from Rocky Bay, Natal, South Africa. South African J. Bot. 53: 129–139.

    Google Scholar 

  • Morrall, S., 1980. A comparison of the periodic substructure of the trichocysts of the Cryptophyceae and Prasinophyceae. BioSystems 12: 71–83.

    Article  PubMed  CAS  Google Scholar 

  • Morrall, S., 1980. Ultrastructure of the Cryptophyceae, including cyst formation and trichocyst substructure. PhD Thesis, Imperial College, University of London.

    Google Scholar 

  • Nishijima, T., 1990. Growth characteristics of Plagioselmis sp. (strain 87) causing freshwater red tide in the lower part of the Nakasuji River, Japan. Bull. Jap. Soc. Sci. Fish. 56: 353–359.

    Google Scholar 

  • Norris, R. E., 1964. Studies on phytoplankton in Wellington Harbour. New Zealand J. Bot. 2: 258–278.

    Google Scholar 

  • Novarino, G., 199 1a. Observations on Rhinomonas reticulata comb. nov. and Rhinomonas reticulata var. eleniana var. nov. (Cryptophyceae), with comments on the genera Pyrenomonas and Rhodomonas. Nordic J. Bot. 11: 243–252.

    Google Scholar 

  • Novarino, G., 1991b. Observations on some new and interesting Cryptophyceae. Nordic J. Bot. 11: 599–611.

    Google Scholar 

  • Novarino, G., 1993. Possible detection of the periplast areas and the nucleomorph of cryptomonads by light microscopy: some early observations by Künstler, Skuja and Hollande. Quekett J. Microsc. 37: 45–51.

    Google Scholar 

  • Novarino, G., 1996. Notes on flagellate nomenclature. I. Cryptaulaxoides nom. nov., a zoological substitute for Cryptaulax Skuja, 1948 (Protista incertae sedis) non Cryptaulax Tate, 1869 (Mollusca, Gastropoda) non Cryptaulax Cameron, 1906 (Insecta, Hymenoptera), with remarks on botanical nomenclature. Acta Protozool. 35: 235–238.

    Google Scholar 

  • Novarino, G., 2002. Phylum Cryptophyta (Cryptomonads). In John, D. M., B. A. Whitton & A. J. Brook (eds), The Freshwater Algal Flora of the British Isles. An Identification Guide to Freshwater and Terrestrial Algae. Cambridge University Press, Cambridge: 180–185.

    Google Scholar 

  • Novarino, G. & M. Gilbert, 2002. Proposal to conserve the name Cryptochloris J. Schiller (Cryptophyceae) against Cryptochloris Bentham ( Poaceae ). Taxon 51: 181–182.

    Google Scholar 

  • Novarino, G. & I. A. N. Lucas, 1993a. A comparison of some morphological characters in Chroomonas ligulata sp. nov. and C. placoidea sp. nov. (Cryptophyceae). Nordic J. Bot. 13: 583–591.

    Google Scholar 

  • Novarino, G. & I. A. N. Lucas, 1993b. Some proposals for a new classification system of the Cryptophyceae. Bot. J. linn. Soc. 111: 3–21.

    Google Scholar 

  • Novarino, G. & I. A. N. Lucas, 1995. A zoological classification system of cryptomonads. Acta Protozool. 34: 173–180.

    Google Scholar 

  • Novarino G. & E. Oliva, 1998. Typification and ultrastructural characterization of long-described flagellate taxa based on original type material. In The Flagellates Symposium, University of Birmingham, 7–11 September 1998 (abstract).

    Google Scholar 

  • Novarino, G., I. A. N. Lucas & S. Morrall, 1994. Observations on the genus Plagioselmis (Cryptophyceae). Cryptogamie, Algologie 15: 87–107.

    Google Scholar 

  • Novarino, G., D. K. Mills & F. Hannah, 1997. Pelagic flagellate populations in the southern North Sea, 1988–89.1. Qualitative observations. J. Plankton Res. 19: 1081–1109.

    Google Scholar 

  • Novarino, G. & D. M. Roberts, 1994. Digital film as an aid for studying live protists. Binary –- Computing in Microbiology 6: 197–203.

    Google Scholar 

  • Novarino, G., A. Warren, N. E. Kinner & R. W. Harvey, 1994. Protists from a Sewage-Contaminated Aquifer on Cape-Cod, Massachusetts. Geomicrobiol. J. 12: 23–36.

    Google Scholar 

  • Ondratschek, K., 1941. Uber die ‘Variabilität’ farbloser Flagellaten. Beihefte Botanisches Centralblatt 61 ( Abteil. A): 277–309.

    Google Scholar 

  • Padisák, J., G. Borics, G. Fehér, I. Grigorszky, I. Oldal, A. Schmidt & Z. Zámbóné-Doma, 2003. Dominant species, functional assemblages and frequency of equilibrium phases in late summer phytoplankton assemblages in Hungarian small shallow lakes. Hydrobiologia 502 ( Dev. Hydrobiol. 172 ): 157–168.

    Google Scholar 

  • Pascher, A., 1911. Zwei braune Flagellaten. Berichte der deutschen Botanischen Gesellschaft 29: 190–192.

    Google Scholar 

  • Pascher, A., 1913. Cryptomonadinae. In Pascher, A. (ed.), Die Süsswasser-Flora Deutschlands, Österreichs und der Schweiz. Verlag von Gustav Fischer, Jena: 96–114.

    Chapter  Google Scholar 

  • Patterson, D. J., 1986. Some problems of ambiregnal taxonomy and a possible solution. Symp. Biol. Hungarica 33: 87–93.

    Google Scholar 

  • Patterson, D. J. & S. Hedley, 1992. Free-living freshwater Protozoa–a colour guide. Wolfe, London. 223 pp.

    Google Scholar 

  • Paulsen, B. S., A. A. H. Vieira & D. Klaveness, 1992. Structure of extracellular polysaccharides produced by a soil Cryptomonas sp. (Cryptophyceae). J. Phycol. 28: 61–63.

    Google Scholar 

  • Pratt, D. M., 1959. The phytoplankton of Narragansett Bay. Limnol. Oceanogr. 4: 425–440.

    Google Scholar 

  • Pringsheim, E. G., 1944. Some aspects of taxonomy in the Cryptophyceae. New Phytol. 43: 143–150.

    Article  Google Scholar 

  • Pringsheim, E. G., 1963. Farblose Algen. Ein Beitrag zur Evolutionsforchung. Gustav Fischer Verlag, Stuttgart.

    Google Scholar 

  • Pringsheim, E. G., 1968. Zur Kenntnis der Cryptomonaden des Susswassers. Nova Hedwigia 16: 367–401.

    Google Scholar 

  • Reynolds, C. S., 1978. Notes on the phytoplankton periodicity of Rostherne Mere, Cheshire, 1967–1977. British Phycol. J. 13: 329–335.

    Google Scholar 

  • Roberts, E. C., J. Laybourn-Parry, D. M. McKnight & G. Novarino, 2000. Stratification and dynamics of microbial loop communities in Lake Fryxell, Antarctica. Freshwat. Biol. 44: 649–661.

    Google Scholar 

  • Roberts, K. R., K. D. Stewart & K. R. Mattox, 1981. The flagellar apparatus of Chilomonas paramecium (Cryptophyceae) and its comparison with certain zooflagellates. J. Phycol. 17: 159–167.

    Google Scholar 

  • Robinson, C., S. D. Archer & P. J. L. Williams, 1999. Microbial dynamics in coastal waters of East Antarctica: plankton production and respiration. Mar. Ecol. Prog. Ser. 180: 23–26.

    Google Scholar 

  • Ruttner, F., 1959. Einige Beobachtungen ueber das Phytoplankton norditalienischer Seen. Mem. Ist. ital. Idrobiol. Dott. Marco de Marchi 11: 73–111.

    Google Scholar 

  • Sandon, H., 1927. The composition and distribution of the protozoan fauna of the soil. Oliver & Boyd, Edinburgh & London.

    Google Scholar 

  • Santore, U. J., 1983. Flagellar and body scales in the Crypto-phyceae. British Phycol. J. 18: 239–248.

    Google Scholar 

  • Santore, U. J., 1984. Some aspects of the taxonomy in the Cryptophyceae. New Phytol. 98: 627–646.

    Article  Google Scholar 

  • Santore, U. J., 1985. A cytological survey of the genus Cryptomonas ( Cryptophyceae) with comments on its taxonomy. Archiv für Protistenkunde 130: 1–52.

    Google Scholar 

  • Santore, U. J., 1986. The ultrastructure of Pyrenomonas hetero- morpha comb. nov. (Cryptophyceae). Bot. Mar. 29: 75–82.

    Google Scholar 

  • Schanz, F., 1985. Vertical light attenuation and phytoplankton development in Lake Zurich. Limnol. Oceanogr. 30: 299–310.

    Google Scholar 

  • Schiller, J., 1913. Vorläufige Ergebnisse der Phytoplanktonuntersuchungen auf den Fahrten S.M.S. ‘Najade’ in der Adria. S.tzungsberichte Kais Akademie der Wissenschaften, Mathematisch-Naturwissenschaften Klasse, Abt. I 122: 621– 630.

    Google Scholar 

  • Schiller, J., 1925. Die planktontischen Vegetationen des adriatischen Meeres. B. Chrysomonadina, Heterokontae, Cryptomonadina, Eugleninae, Volvocales. I. Systematischer Teil. Archiv für Protistenkunde 53: 59–123.

    Google Scholar 

  • Schiller, J., 1929. Neue Chryso-und Cryptomonaden aus Altwässern der Donau bei Wien. Archiv für Protistenkunde 66: 436–458.

    Google Scholar 

  • Schiller, J., 1954. Neue Mikrophyten aus künstlichen betonierten Wasserbehältern. Archiv für Protistenkunde 100: 116–126.

    Google Scholar 

  • Schiller, J., 1957. Untersuchungen an den planktischen Protophyten des Neusiedlersees 1950–1954, II. Teil. Wiss. Arbeit. Burgenland 18: 1–44.

    Google Scholar 

  • Seaburg, K. G., B. C. Parker, G. W. Prescott & L. A. Whitford, 1979. The algae of Southern Victorialand, Antarctica. Bibliotheca Phycologica 46, J. Cramer, Vaduz. 169 pp.

    Google Scholar 

  • Senn, G., 1900. Flagellaten. In Engler A. & K. Prantl (eds), Die naturliche Pflanzenfamilien. Verlag von Wilhelm Engelmann, Leipzig: 93–192.

    Google Scholar 

  • Sitte, P. & U. G. Maier, 1992. Evolution of complex plastids from eukaryotic endosymbionts. Endocytobiosis and Cell Res. 8: 223– 225.

    Google Scholar 

  • Skuja, H., 1939. Beitrag zur Algenflora Lettlands II. Acta. Horti Botanici Universitatis Latviensis 11 /12: 41–169.

    Google Scholar 

  • Skuja, H., 1948. Taxonomie des Phytoplanktons einiger Seen in Uppland, Schweden. Symbolae Bot. Ups. 9: 1–399.

    Google Scholar 

  • Skuja, H., 1956. Taxonomische und biologische Studien über das Phytoplankton Schwedischer Binnengewasser. N. Acta Regiae Societatis Scientiarum Upsaliense, Ser. IV 16: 1–404.

    Google Scholar 

  • Skvortzov (Skvortzow), B. V. (B. W), 1960. Algae novae et minus cognitae Chinae boreali-orientalis. 2. Flagellatae prope oppidum mukden in anno 1957 collectarum. Bull. Herb. North-east. Forest. Acad. Harbin 2: 1–8.

    Google Scholar 

  • Skvortzov (Skvortzow), B. V. (B. W), 1968. On new genera of Cryptomonadinae recorded from North-Eastern China. J. Jap. Bot. 43: 8–16.

    Google Scholar 

  • Skvortzov (Skvortzow), B. V. (B. W), 1957. New and rare Flagellatae from Manchuria, Eastern Asia. Philippine J. Sci. 86: 139–202.

    Google Scholar 

  • Sommer, U., 1982. Vertical niche separation between two closely related planktonic flagellate species (Rhodomonas lens and Rhodomonas minuta v. nannoplanctica). J. Plankton Res. 4: 137–142.

    Article  Google Scholar 

  • Stokes, A. C., 1888. A preliminary contribution toward a history of the fresh-water Infusoria of the United States. J. Trenton Nat. Hist. Soc. 1: 71–344.

    Google Scholar 

  • Systematics Association Committee for Descriptive Biological Terminology, 1962. II. Terminology of simple symmetrical plane shapes (chart 1). Taxon 11: 145–156.

    Article  Google Scholar 

  • Taylor, D. L. & C. C. Lee, 1971. A new cryptomonad from Antarctica: Cryptomonas cryophila sp. nov. Archiv für Mikrobiologie 75: 269–280.

    Article  Google Scholar 

  • Thomsen, H. A. (ed.), 1992. Plankton i de Indre Danske Farvande. Havforsnkning fra Milj¢styrelsen, Milj¢ministeriet Milj¢styrelsen, Copenhagen. 331 pp.

    Google Scholar 

  • Ülehla, V., 1911. Die Stellung der Gattung Cyathomonas From. im System der Flagellaten. Berichte der Deutschen Botanischen Gesellschaft 29: 284–292.

    Google Scholar 

  • Tolotti, M., H. Thies, M. Cantonati, C. M. E. Hansen & B. Thaler, 2003. Flagellate algae (Chrysophyceae, Dinophyceae, Cryptophyceae) in 48 high mountain lakes of the Northern and Southern slope of the Eastern Alps: biodiversity, taxa distribution and their driving variables. Hydrobiologia 502 ( Dev. Hydrobiol. 172 ): 331–348.

    Google Scholar 

  • Van der Auwera, G., C. J. B. Hofmann, P. De Rijk & R. De Wachter, 1998. The origin of red algae and cryptomonad nucleomorphs: A comparative phylogeny based on small and large subunit rRNA sequences of Palmaria palmata, Gracilaria verrucosa, and the Guillardia theta nucleomorph. Mol. Phylogen. Evol. 10: 333– 342.

    Google Scholar 

  • Vørs, N., 1992. Ultrastructure and autecology of the marine, heterotrophic flagellate Leucocryptos marina (Braarud) Butcher 1967 (Katablepharidaceae/Kathablepharidae), with a discussion of the genera Leucocryptos and Katablepharis/Kathablepharis. Eur. J. Protistol. 28: 369–389.

    Google Scholar 

  • Wailes, G. H., 1939. The plankton of Lake Windermere, England. Annals and Magazine of Natural History, Series 11, 3: 401–404.

    Google Scholar 

  • Wetherbee, R., D. R. A. Hill & S. J. Brett, 1987. The structure of the periplast components and their association with the plasma membrane in a cryptomonad flagellate. Can. J. Bot. 65: 1019– 1026.

    Google Scholar 

  • Wetherbee, R., D. R. A. Hill & G. I. McFadden, 1986. Periplast structure of the cryptomonad flagellate Hemiselmis brunnescens. Protoplasma 131: 11–22.

    Article  Google Scholar 

  • Willén, E., 2003. Dominance patterns of planktonic algae in Swedish forest lakes. Hydrobiologia 502 ( Dev. Hydrobiol. 172 ): 315–324.

    Google Scholar 

  • Willén, E., M. Oké & F. Gonzàlez, 1980. Rhodomonas minuta and Rhodomonas lens (Cryptophyceae)–Aspects of form-variation and ecology in lakes Mälaren and Vättern, Central Sweden. Acta Phytogeographica Suecica 68: 163–172.

    Google Scholar 

  • Wislouch, S., 1924. Przyczynek do biologji solnisk i genezy szlamów leczniczych na Krymie ( Beiträge zur Biologie und Entstehung von Heilschlamm der Salinen der Krim) [in Polish and German]. Acta Societatis Botanicorum Poloniae 2: 99–129.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Novarino, G. (2003). A companion to the identification of cryptomonad flagellates (Cryptophyceae = Cryptomonadea). In: Naselli-Flores, L., Padisák, J., Dokulil, M.T. (eds) Phytoplankton and Equilibrium Concept: The Ecology of Steady-State Assemblages. Developments in Hydrobiology, vol 172. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2666-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2666-5_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6433-2

  • Online ISBN: 978-94-017-2666-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics