Skip to main content

The role of physical stability on the establishment of steady states in the phytoplankton community of two Maritime Antarctic lakes

  • Conference paper
Phytoplankton and Equilibrium Concept: The Ecology of Steady-State Assemblages

Part of the book series: Developments in Hydrobiology ((DIHY,volume 172))

  • 312 Accesses

Abstract

Two Antarctic lakes near Hope Bay were studied during summers 1998 and 1999. One of the lakes (Boeckella) is located near Esperanza Station and exhibits a meso-eutrophic condition due to the input of nutrients of a nearby penguin rookery. Its surface generally remains ice-free during the Antarctic summer (December–March). The other lake (Chico) is situated on the Mount Flora shelf, is typically oligotrophic and its surface is ice-free only during brief periods in the summer season. The difference in the duration of the ice-cover insures that the wind mixes the former lake continuously throughout the summer, while the latter remains almost always stratified. X 2 , X 3 and Z functional groups defined by Reynolds dominated phytoplankton in both lakes. In Lake Boeckella, Chlamydomonas spp. followed by Ochromonas sp. were the most frequently encountered taxa in the nano-phytoplankton fraction, however the latter species was dominant when the lake froze. In Lake Chico, the major contribution to this fraction was due to different genera of flagellated Chrysophyceae (Ochromonas sp., Chromulina spp., cf. Chrysidalis). In terms of density and biomass in both lakes picocyanobacteria represented a large proportion of the phytoplankton. Probably due to the typically low algal biodiversity of Antarctic lakes, both water bodies showed periods of more than 2 weeks when a maximum of only three species comprised more than 80% of the standing crop. In spite of this, Chico Lake was the only one in which no significant change was recorded in total biomass. Thus, we were able to identify equilibrium phases in the latter lake, which were confirmed by a low coefficient of variation. The presence of an almost permanent ice cover in Chico Lake generated more stable ecological conditions, allowing the development of steady state assemblages. On the contrary, the wind influence in the shallow Antarctic ice free lake (Lake Boeckella) provided continuous mixing events, disrupting the possibility of establishing a steady state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agawin, N. S. R., C. M. Duarte & S. Agusti, 2000. Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production. Limnol. Oceanogr. 45: 591–600.

    Article  CAS  Google Scholar 

  • Andreoli, C., N. Rascio, I. Moro, L. Scarabel, C. Tolomio, F. Dalla Vecchia & L. Maseiro, 1996. Ecological, ultrastructural and physiological features of Antarctic microalgae. In Prisco G., S. Focasdi & P. Liporini (eds.), Proceedings of the Third Meeting on Antarctic Biology: 275–285.

    Google Scholar 

  • Bird, D. F. & J. Kalff, 1986. Bacterial grazing by planktonic lake algae. Science 231: 493–494.

    Article  PubMed  CAS  Google Scholar 

  • Burch, M. D., 1988. Annual cycle of phytoplankton in Ace Lake, an ice covered, saline meromictic lake. Hydrobiologia 165: 59–75.

    Article  CAS  Google Scholar 

  • Butler, H. G., 1999. Seasonal dynamics of the planktonic microbial community in a maritime Antarctic lake undergoing eutrophication. J. Plankton Res. 21: 2393–2419.

    Article  Google Scholar 

  • Callieri, C. & J. Stockner, 1997. Pico-blues success across freshwater trophic gradient. In Proceedings of 7th International Conference on Lakes Conservation and management. S. M. de los Andes.

    Google Scholar 

  • Callieri, C. & M. L. Pinolini, 1995. Picoplankton in Lake Maggiore, Italy. Int. Rev. ges. Hydrobiol. 80: 491–501.

    Article  Google Scholar 

  • Callieri, C. & J. Stockner, 2000. Picocyanobacteria success in oligotrophic lakes: fact or fiction ? J. Limnol. 59: 72–76.

    Article  Google Scholar 

  • Callieri, C. & J. Stockner, 2002. Freshwater autotrophic picoplankton: a review. J. Limnol. 61: 1–14.

    Google Scholar 

  • Dokulil, M. T. & K. Teubner, 2003. Steady state phytoplankton assemblages during thermal stratification in deep alpine lakes. Do they occur? Hydrobiologia 502 ( Dev. Hydrobiol. 172 ): 65–72.

    Article  Google Scholar 

  • Ellis-Evans, J. C., 1991. Numbers and activity of bacterio-and phytoplankton in contrasting Maritime Antarctic lakes. Int. Ver. für theor. angew. Limnol.: Verh. 24: 1149–1154.

    Google Scholar 

  • Ellis-Evans, J. C., 1996. Microbial diversity and function in Antarctic freshwater ecosystems. Biodiversity and Conservation 5: 1395–1431.

    Article  Google Scholar 

  • Hawes, I., 1983. Nutrients and their effects on phytoplankton populations in lakes on Signy Island, Antarctica. Polar Biol. 2: 115–126.

    Google Scholar 

  • Hawes, I., 1990, Eutrophication and vegetation development in Maritime Antarctic Lakes. In Kerry, K. R. & G. Hempel (eds), Antarctic Ecosystems. Ecological Change and Conservation. Springer-Verlag, Berlin, Heidelberg, New York: 83–90.

    Google Scholar 

  • Heywood, R. B., 1977. Antarctic freshwater ecosystems–a review and synthesis: In Llano G. A. (ed.), Adaptations within Antarctic Ecosystems. Gulf Publishing, Houston: 801–828.

    Google Scholar 

  • Hillebrand H., C-D. Durselen, D. Kirshtel, U. Pollingher & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. J. Phycol. 35: 403–424.

    Article  Google Scholar 

  • Izaguirre, I., G. Mataloni, A. Vinocur & G. Tell, 1993. Temporal and spatial variations of phytoplankton from Boeckella Lake ( Hope Bay, Antarctic Peninsula). Antarctic Sci. 5: 137–141.

    Article  Google Scholar 

  • Izaguirre, I., A. Vinocur, G. Mataloni & M. Pose, 1998. Comparison of phytoplankton communities in relation to trophic status in lakes from Hope Bay (Antarctic Peninsula). Hydrobiologia 369 /370: 73–87.

    Article  Google Scholar 

  • Izaguirre, I., G. Mataloni, L. Allende & A. Vinocur, 2001. Summer fluctuations of microbial planktonic communities in a eutrophic lake –- Cierva Point, Antarctica. J. Plankton Res. 23: 1095–1109.

    Article  CAS  Google Scholar 

  • Izaguirre, I., L. Allende & C. Marinone. Comparative study of the planktonic communities from lakes of contrasting trophic status at Hope Bay (Antarctic Peninsula). J. Plankton Res., 25 (9).

    Google Scholar 

  • Izaguirre, I. & P. Almada, 2001. Cambios en las características limnológicas y en biomasa fitoplanctónica del lago Boeckella ( Bahía Esperanza) asociados al brusco descenso en su nivel hidrométrico. Contribución Instituto Antártico Argentino 553: 1–6.

    Google Scholar 

  • Jones, R. I., 1994. Mixotrophy in planktonic protists as a spectrum of nutritional strategies. Mar. Microbial Food Webs 8: 87–96

    Google Scholar 

  • Jones, R. I., 2000. Mixotrophy in planktonic protists: an overview. Freshwat. Biol. 45: 219–226.

    Google Scholar 

  • Laybourn-Parry, J., E. C. Roberts & E. M. Bell, 2000. Mixotrophy as a survival strategy among planktonic protozoa in Antarctic lakes. In Davison, W. C. Howard-Williams & P. Broady (eds), Antarctic Ecosystems: Model for a Wider Ecological Understanding. The Caxton Press, Christchurch: 33–40.

    Google Scholar 

  • Magurran, A. E., 1988. Ecological Diversity and Its Measurements. Chapman and Hall, London. 179 pp.

    Chapter  Google Scholar 

  • Marker, A. F. H., A. Nusch, H. Rai & B. Riemann, 1980. The measurement of photosynthetic pigments in freshwater and standardization of methods: conclusions and recommendations. Archiv für Hydrobiol./Ergeb. Limnol. 14: 91–106.

    CAS  Google Scholar 

  • Mataloni, G., G. Tesolín & G. Tell, 1998. Characterization of a small eutrophic Antarctic lake (Otero Lake, Cierva Point) on the basis of algal assemblages and water chemistry. Polar Biol. 19: 107– 114.

    Google Scholar 

  • Mataloni, G., G. Tesolin, F. Sacullo & G. Tell, 2000. Factors regulating summer phytoplankton in a highly eutrophic Antarctic lake. Hydrobiologia 432: 65–72.

    Article  Google Scholar 

  • Mc Knight, D. M., B. L. Howes, C. D. Taylor & D. D. Goehringer, 2000. Phytoplankton dynamics in a stably stratified Antarctic lake during winter darkness. J. Phycol. 36: 852–861.

    Article  Google Scholar 

  • Naselli-Flores, L., J. Padisák, M. T. Dokulil & I. Chorus, 2003. Equilibrium/steady-state concept in phytoplankton ecology. Hydrobiologia 502 ( Dev. Hydrobiol. 172 ): 395–403.

    Article  Google Scholar 

  • Olrik, K. & A. Nauwerck, 1993. Stress and disturbance in phytoplankton community of a shallow, hypertrohic lake. Hydrobiologia 249: 15–24.

    Article  CAS  Google Scholar 

  • Padisák, J., G. Borics, G. Fehér, I. Grigorszky, I. Oldal, A. Schmidt & Z. Zámbóné-Doma, 2003. Dominant species, functional assemblages and frequency of equilibrium phases in late summer phytoplankton assemblages in Hungarian small shallow lakes. Hydrobiologia 502 ( Dev. Hydrobiol. 172 ): 157–168.

    Article  Google Scholar 

  • Pose, M. & I. Izaguirre, 1997. Sucesión estival de las poblaciones fitoplanctónicas en el lago Boeckella ( Bahía Esperanza, Antártida). Contribución Instituto Antártico Argentino 449: 1–27.

    Google Scholar 

  • Priddle, J., 1980. The production ecology of benthic plants in some Antarctic lakes. 1. In situ production studies. J. Ecol. 68: 141– 153.

    Google Scholar 

  • Priddle, J., I. Hawes, J. C. Ellis-Evans & T. J. Smith, 1986. Antarctic aquatic ecosystems as habitats for phytoplankton. Biol. Rev. 61: 199–238.

    Article  Google Scholar 

  • Rankin, L. M., P. D. Franzmann, T. A. Michelin & H. R. Burton, 1997. Seasonal distribution of picoCyanobacteria in Ace Lake, a marine-derived Antarctic lake. In Battaglia, B., J. Valencia & D. W. H. Walton (eds), Antarctic Communities. Species, Structure and Survival. Cambridge University Press, Cambridge: 178–184.

    Google Scholar 

  • Reynolds, C. S., J. Padisák & U. Sommer, 1993. Intermediate disturbance in the ecology of phytoplankton and the maintenance of species diversity: a synthesis. In Padisák, J., C. S. Reynolds & U. Sommer (eds), Intermediate Disturbance Hypothesis in Phytoplankton Ecology. Developments in Hydrobiology 81, Kluwer Academic Publishers, Dordrecht: 157–171.

    Chapter  Google Scholar 

  • Reynolds, C. S., V. Huszar, C. Kruk, L. Naselli-Flores & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. J. Plankton Res. 24: 417–428.

    Article  Google Scholar 

  • Rocco, V. E., O. Oppezzo, R. Pizarro, R. Sommaruga, M. Ferraro & H. E. Zagarese, 2002. Ultraviolet damage and counteracting mechanisms in the copepod Boeckella poppei from Antarctic freshwater lakes. Limnol. Oceanogr. 47: 837–847.

    Article  Google Scholar 

  • Sandgren, C. D., 1988. Growth and reproductive strategies of freshwater phytoplankton. Cambridge University Press, Cambridge: 442 pp.

    Google Scholar 

  • Sommaruga, R. & R. D. Robarts, 1997. The significance of autotrophic and heterotrophic picoplankton in hypereutrophic ecosystems. FEMS Microbiol. Ecol. 24: 187–200.

    Article  CAS  Google Scholar 

  • Sommer, U., 1989. Maximal growth rates of Antarctic phytoplank-ton: only weak dependence on cell size. Limnol. Oceanogr. 34: 1109–1112.

    Google Scholar 

  • Sommer, U., Z. M. Gliwicz, W. Lampert & A. Duncan, 1986. The PEG Model of seasonal succession of planktonic events in freshwaters. Archiv für Hydrobiol. 106: 433–471.

    Google Scholar 

  • Sommer, U., J. Padisák, C. S. Reynolds & P. Juhász-Nagy, 1993. Hutchinson’s heritage: the diversity disturbance relationship in phytoplankton. Hydrobiologia 249: 1–7.

    Article  Google Scholar 

  • Stockner, J. G., 1988. Phototrophic picoplankton: an overview from marine and freshwater ecosystems. Limnol. Oceanogr. 33: 765– 775.

    Google Scholar 

  • Stockner, J. G, C. Callieri & G. Cronberg, 2000. Picoplankton and other non-bloom-forming Cyanobacteria in lakes. In Whitton, B.A. & M. Potts (eds), The Ecology of Cyanobacteria. Kluwer Academic Publishers, Dordrecht: 195–231.

    Google Scholar 

  • Tang, E. P. & W. F. Vincent, 1999. Strategies of thermal adaptation by high-latitude Cyanobacteria. The New Phycol. 142: 315–323.

    Article  Google Scholar 

  • Tell, G., A. Vinocur & I. Izaguirre, 1995. Cyanophyta of lakes and ponds of Hope Bay, Antarctic Peninsula. Polar Biol. 15: 503– 509.

    Google Scholar 

  • Tolotti, M., H. Thies, M. Cantonati, C. M. E. Hansen & B. Thaler, 2003. Flagellate algae (Chrysophyceae, Dinophyceae, Cryptophyceae) in 48 high mountain lakes of the Northern and Southern slope of the Eastern Alps: biodiversity, taxa distribution and their driving variables. Hydrobiologia 502 ( Dev. Hydrobiol. 172 ): 331–348.

    Article  Google Scholar 

  • Utermöhl, H., 1958. Zur vervollkommnung der quantitativen Phytopankton Methodik. Mitt. int. Ver. theor. angew. Limnol. 9: 1–38.

    Google Scholar 

  • Venrick, E. L., 1978. How many cells to count? In von Sournia, A. (ed.), Phytoplankton Manual. Unesco, Paris: 167–180.

    Google Scholar 

  • Vincent, W. F., 2000. Cyanobacterial dominance in polar regions. In Whitton, B. A. & M. Pots (eds), The Ecology of Cyanobacteria. Kluwer Academic Publishers, Dordrecht: 321–340.

    Google Scholar 

  • Vinocur, A. & H. Pizarro, 2000. Microbial mats of twenty-six lakes from Potter Peninsula, King George Island, Antarctica. Hydrobiologia 37: 71–185.

    Google Scholar 

  • Vinocur, A. & F. Unrein, 2000. Typology of lentic water bodies of Potter Peninsula ( King George Island, Antarctica) based on physical-chemical characteristics and phytoplankton communities. Polar Biol. 23: 858–870.

    Article  Google Scholar 

  • Vinocur, A. & I. Izaguirre, 1994. Freshwater algae from nine lakes and pools of Hope Bay, Antarctic Peninsula. Antarctic Sci. 6: 483–489.

    Article  Google Scholar 

  • Vörös, L., C. Callieri, K V-Balogh & R. Bertoni, 1998. Freshwater picoCyanobacteria along a trophic gradient and light quality range. Hydrobiologia 369 /370: 117–125.

    Article  Google Scholar 

  • Wynn-Williams, D. D., 1992. Direct quantification of microbial propagules and spores. In Wynn-Williams, D. D. (ed.), Biotas Manual of Methods. Scientific Committee on Antarctic Research, Cambridge: 34 pp.

    Google Scholar 

  • Zipan, W. & P. P. Deprez, 2000. Study on ecological structures of coastal lakes in Antarctic continent. Chinese J. Polar Sci. 11: 147–160.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Allende, L., Izaguirre, I. (2003). The role of physical stability on the establishment of steady states in the phytoplankton community of two Maritime Antarctic lakes. In: Naselli-Flores, L., Padisák, J., Dokulil, M.T. (eds) Phytoplankton and Equilibrium Concept: The Ecology of Steady-State Assemblages. Developments in Hydrobiology, vol 172. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2666-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2666-5_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6433-2

  • Online ISBN: 978-94-017-2666-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics