Skip to main content

Abstract

According to the classical definition “Interactions between nutrients occur when the supply of one nutrient affects the absorption, distribution or function of another nutrient. Thus, depending on nutrient supply, interactions between nutrients can either induce deficiencies or toxicities and can modify growth response” (Robson and Pitman, 1983). There are many nonspecific as well as specific interactions between mineral nutrients of plants (Robson and Pitman, 1983; Marschner 1988). When contents of any mineral nutrients are near the deficiency range the importance of interactions between two mineral nutrients increases. Specific interactions, e.g. competition between nutrients at the cellular level or replacement of one nutrient by another, are also important in evaluating critical toxicity contents (Foy et al., 1978; Marschner, 1988).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adriano, D.C., Paulsen, G.M. and Murphy, L.S. (1971) Phosphorus-iron and phosphorus-zinc relationships in corn (Zea mays). Agron. J. 63, 36–39.

    CAS  Google Scholar 

  • Agarwal K, Sharma, A. and Talukder, G. (1987) Copper toxicity in plant cellular systems. Nucleus 30, 131–158.

    Google Scholar 

  • Agarwala, S.C., Bisht, S.S. and Sharma, C.P. (1977) Relative effectiveness of certain heavy metals in producing toxicity and symptoms of iron deficiency in barley. Can. J. Bot. 55, 1299–1307.

    CAS  Google Scholar 

  • Agriffoul, A., Mocquot, B., Mench, M., and Vangronsveld, J. (1998) Cadmium toxicity on growth, mineral and chlorophyll contents, and activities of stress related enzymes in young maize plants (Zea mays L.). Plant Soil 200, 241–250.

    Google Scholar 

  • Alcântara, E., Romera, F.J., Canete, M., and De la Guardia, M.D. (1994) Effects of heavy metals on both induction and function of root Fe(III) reductase in Fe-deficient cucumber (Cucumis sativus L.) plants. J. Exp. Bot. 45, 1893–1898.

    Google Scholar 

  • Alloway, B.J. (1995) Heavy Metals in Soils, Blackie, Glasgow.

    Google Scholar 

  • Baszynski, T., Wajda, L., Król, M., Wolinska, D., Krupa, Z., and Tukendorf, A. (1980) Photosynthetic activities of cadmium-treated tomato plants. Physiol. Plant. 48, 365–370.

    CAS  Google Scholar 

  • Biddappa, C.C., Khan, H.H., Joshi, O.P., and Manikandan, P. (1987) Effect of root feeding of heavy metals on the leaf concentration of P, K, Ca and Mg in coconut (Cocos nucifera L.). Plant Soil 101, 295–297.

    CAS  Google Scholar 

  • Brown, J.C., and Jolley, V.D. (1989) Plant metabolic responses to iron-deficiency stress. A variety of mechanisms grouped into two major strategies, make iron available from the soil. BioScience 39, 546–551.

    Google Scholar 

  • Burzynski, M. (1987) The influence of lead and cadmium on the absorption and distribution of potassium, calcium, magnesium and iron in cucumber seedlings. Acta Physiol. Plant. 9, 229–238.

    CAS  Google Scholar 

  • Burzynski, M., and Buczek, J. (1989) Interaction between cadmium and molybdenum affecting the chlorophyll content and accumulation of some heavy metals in the second leaf of Cucumis sativus L. Acta Physiol. Plant. 11, 137–145.

    CAS  Google Scholar 

  • Chaoui, A., Ghorbal, M.H., and El Ferjani, E. (1997) Effects of cadmium-zinc interactions on hydroponically grown bean (Phaseolus vulgaris L.). Plant Sci. 126, 21–28.

    CAS  Google Scholar 

  • Chien, H.F., and Kao, C.H. (2000) Accumulation of ammonium in rice leaves in response to excess cadmium. Plant Sci. 156, 111–115.

    PubMed  CAS  Google Scholar 

  • Cutler, J.M., and Rains, D.W., (1974) Characterization of cadmium uptake by plant tissue. Plant Physiol, 54, 67–71.

    PubMed  CAS  Google Scholar 

  • De Filippis, L.F., (1979) The effect of heavy metals on the absorption spectra of Chlorella cells and chlorophyll solutions. Z. Pflanzenphysiol. 93, 129–137.

    Google Scholar 

  • De Kock, P.C., and Mitchell, R.L. (1957) Uptake of chelated metals by plants. Soil Sci. 84, 55–62.

    Google Scholar 

  • Fernandes, J.C., and Henriques, F.S. (1991) Biochemical, physiological, and structural effects of excess copper in plants. Bot. Rev. 57, 246–273.

    Google Scholar 

  • Foulkes, E.C. (2000) Transport of toxic metals across cell membranes. Proc. Soc. Exp. Biol. Med. 223, 234–240.

    PubMed  CAS  Google Scholar 

  • Foy, C.D. (1983) The physiology of plant adaptation to mineral stress. Iowa State J. Res. 57, 355–391.

    CAS  Google Scholar 

  • Foy, C.D., Chaney, R.L., and White, M.C. (1978) The physiology of metal toxicity in plants. Annu. Rev. Plant Physiol. 29, 511–566.

    CAS  Google Scholar 

  • Ghanotakis, D.F„ and Yocum, C.F. (1990) Photosystem II and the oxygen-evolving complex. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41, 255–278.

    CAS  Google Scholar 

  • Girling, C.A., and Peterson, P.J, (1981) The significance of the cadmium species in the uptake and metabolism of cadmium in crop plants. J. Plant Nutr. 3, 707–720.

    CAS  Google Scholar 

  • Goodbold, D.L., and Kettner, C. (1991) Leaf influences root growth and mineral nutrition of Picea abies seedlings. J. Plant Physiol. 139, 95–99.

    Google Scholar 

  • Goss, M.J., and Carvalho, J.M.G.P.R. (1992) Manganese toxicity: the significance of magnesium for the toxicity of wheat plants. Plant Soil 139, 90–98.

    Google Scholar 

  • Greger, M. (1989) Cadmium effects on carbohydrate metabolism in sugar beet (Beta vulgaris). Doctoral dissertation. Academitryck AB, Edsbruck, 9–11.

    Google Scholar 

  • Greger, M., and Lindberg, S. (1987) Effects of Cd2+ and EDTA on young sugar beets (Beta vulgaris). Il. Net uptake and distribution of Mgt+, Ca2+ and Fee+/Fe’+. Physiol. Plant. 68, 81–86.

    Google Scholar 

  • Greipsson, S. (1994) Effects of iron plaque on roots of rice on growth and metal concentration of seeds and plant tissues when cultivated in excess copper. Commun. Soil Sci. Plant Anal. 25, 2761–2769.

    CAS  Google Scholar 

  • Greipsson, S., and Crowder, A.A. (1992) Amelioration of copper and nickel toxicity by iron plaque on roots of rice (Oryza sativa). Can. J. Bot. 70, 824–830.

    CAS  Google Scholar 

  • Gross, R.E Pugno, P. and Dugger, W.M. (1970) Observations on the mechanism of copper damage in Chlorella. Plant Physiol. 46, 183–185.

    CAS  Google Scholar 

  • Guerinot, M.L., and Yi, Y. (1994) Iron: nutritious, noxious, and not readily available. Plant Physiol. 104, 815–820.

    PubMed  CAS  Google Scholar 

  • Gupta, U.C., and Chipman, E.W. (1976) Influence of iron and pH on the yield of iron, manganese, zinc, and sulfur concentrations of carrots grown on sphagnum peat soil. Plant Soil 44, 559–566.

    CAS  Google Scholar 

  • Hara, T., Sonoda, Y., and Iwai, I. (1976a) Growth response of cabbage plants to transition elements under water culture conditions. I. Titanium, vanadium, chromium, manganese and iron. Soil Sci. Plant Nutr. 22, 307–315.

    CAS  Google Scholar 

  • Hara, T., Sonoda, Y., and Iwai, I. (1976b) Growth response of cabbage plants to transition elements under water culture conditions. II. Cobalt, nickel, copper, zinc and molybdenum. Soil Sci. Plant Nutr. 22, 317–325.

    CAS  Google Scholar 

  • Hams, E.D. (1994) Iron-copper interactions: some new revelations. Nutr. Rev. 52, 311–319.

    Google Scholar 

  • Harrison, S.J., Lepp, N.W., and Phipps, D.A. (1983) Copper uptake by excised roots. III. Effect of manganese on copper uptake. Z. Pflanzephysiol. 109, 285–289.

    CAS  Google Scholar 

  • Hemhndez, L.E., Lozano-Rodriguez, E.., Gérate, A., and Carpena-Ruiz, R. (1998) Influence of cadmium on the uptake, tissue accumulation and subcellular distribution of manganese in pea seedlings. Plant Sci. 132, 139–151.

    Google Scholar 

  • House, W.A. (1999) Trace elements bioavailability as axemplified by iron and zinc. Fields Crop Res. 60, 115–141.

    Google Scholar 

  • Hunter, J.G., and Vergnano, O. (1953) Trace elements toxicities in oat plants. Ann. Appl. Biol. 40, 761–777.

    CAS  Google Scholar 

  • Jarvis, S.C., Jones, L.H.P., and Hopper, M.J. 1976 Cadmium uptake from solution by plants and its transport from roots to shoots. Plant Soil 44, 179–191.

    CAS  Google Scholar 

  • Jastrow, J.D., and Koeppe, D.E. (1980) Uptake and effects of cadmium in higher plants In Cadmium in the Environment. Part I: Ecological Cycling, Ed. JO Nriagu, John Wiley & Sons, 608–638.

    Google Scholar 

  • Jensen, P., and Adalsteinsson, S. (1989) Effects of copper on active and passive Rb influx in roots of winter wheat. Physiol. Plant. 75, 195–200.

    CAS  Google Scholar 

  • Kabata-Pendias, A., and Pendias, H. (2001) Trace Elements in Soils and Plants, CRC Press, Boca Raton.

    Google Scholar 

  • Khan, D.H., and Frankland, B. (1983) Effects of cadmium and lead on radish plants with particular reference to movement of metals through soil profile and plants. Plant Soil 70, 335–345.

    CAS  Google Scholar 

  • Khan, S., and Khan, N. (1983) Influence of lead and cadmium on the growth and nutrient concentration of tomato (Lycopersicum esculentum) and egg plant (Solanum melongea). Plant Soil 74, 387–394.

    CAS  Google Scholar 

  • Kleczkowski, L.A. (1994) Inhibitors of photosynthetic enzymes/carriers and metabolism. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45, 339–367.

    CAS  Google Scholar 

  • Kreimer, G., Melkonian, M., Holtum, J.A.M., and Latzko, E. (1988) Stoma] free calcium concentration and light-regulated activation of chloroplast fructose-1,6-bisphosphatase. Plant Physiol. 86, 423–428.

    PubMed  CAS  Google Scholar 

  • Krupa, Z., Siedlecka, A., and Kleczkowski, L.A. (1999) Cadmium-affected level of inorganic phosphate in rye leaves influences Rubisco subunits. Acta Physiol. Plant. 21, 257–261.

    CAS  Google Scholar 

  • Köpper, H., Köpper, F., and Spiller, M. (1996) Environmental relevance of heavy metal-substituted chlorophylls using the example of water plants. J. Exp. Bot. 47, 259–266.

    Google Scholar 

  • Küpper, H., Köpper, F., and Spiller, M. (1998) In situ detection of heavy metal substituted chlorophylls in water plants. Photosynth. Res. 58, 123–133.

    Google Scholar 

  • Lagriffoul, A., Mocquot, B., Mench, M., and Vangronsveld, J. (1998) Cadmium toxicity effects on growth, mineral and chlorophyll contents, and activities of stress related enzymes in young maize plants (Zea mays L.). Plant Soil 200, 241–250.

    CAS  Google Scholar 

  • Le Bot, J., Goss, M.J., Carvalho, M.J.G.P.R., Van Beusihem, M.L., and Kirkby, E.A. (1990) The significance of the magnesium to manganese ration in plant tissues for growth and alleviation of manganese toxicity in tomato (Lycopersicon esculentum) and wheat (Triticum sativum) plants. Plant Soil 124, 205–210.

    Google Scholar 

  • Lee, S., and Leustek, T. (1999) The effect of cadmium on sulfate assimilation enzymes in Brassica juncea. Plant Sci. 141, 201–207.

    CAS  Google Scholar 

  • Leeper, G.W. (1978) Forms of heavy metals In Managing the Heavy Metals on the Land, Pollution Engineering and Technology 6, Ed. GW Leeper, Marcel Dekker, New York, 5–39.

    Google Scholar 

  • Lolkema, P.C., and Vooijs, R. (1986) Copper tolerance in Silene cucubalus. Subcellular distribution of copper and its effects on chloroplasts and plastocyanin synthesis. Planta 167, 30–36.

    CAS  Google Scholar 

  • Luo, Y., and Rimmer, D.L. (1995) Zinc-copper interaction affecting plant growth on a metal-contaminated soil. Environ. Pollut. 88, 79–83.

    PubMed  Google Scholar 

  • Ma, J.F., and Nomoto, K. (1996) Effective regulation of iron acquisition in graminaceous plants. The role of mugineic acids as phytosiderophores. Physiol. Plant. 97, 609–617.

    CAS  Google Scholar 

  • Maksymiec, W., and Baszynski, T. (1998) The role of Ca ions in changes induced by excess CuZ+ in bean plants. Growth parameters. Acta Physiol. Plant. 20, 411–417.

    CAS  Google Scholar 

  • Maksymiec, W., and Baszynski, T. (1999a) Are calcium ions and calcium channels involved in the mechanisms of CuZ+ toxicity in bean plants? The influence of leaf age. Photosynthetica 36, 267–278.

    CAS  Google Scholar 

  • Maksymiec, W., and Baszynski, T. (1999b) The role of Cat+ ions in modulating changes induced in bean leaves by an excess of CuZ+ ions. Chlorophyll fluorescence measurements. Physiol. Plant. 105, 562–568.

    CAS  Google Scholar 

  • Maas, F.M., Van de Weterin, D.A.M., Van Beusichem, M.L., and Bienfait, H.F. (1988). Characterization of phloem iron and its possible role in regulation of Fe-efficiency reactions. Plant Physiol. 87, 167–171.

    PubMed  CAS  Google Scholar 

  • Marschner, H. (1988) Mineral Nutrition of Higher Plants, Academic Press, London-San Diego-New York.

    Google Scholar 

  • Mishra, D., and Kar, M. (1974) Nickel in plant growth and metabolism. Bot. Rev. 40, 395–452.

    CAS  Google Scholar 

  • Misra, A., and Ramani, S. (1991) Inhibition of iron absorption by zinc induced Fe-deficiency in Japanese mint. Acta Physiol. Plant. 13, 37–42.

    CAS  Google Scholar 

  • Moog, P.R., and Brüggemann, W. (1994) Iron reductase systems on the plant plasma-membrane–a review. Plant Soil 165, 241–260.

    CAS  Google Scholar 

  • Mukhopadhyay, M.J., and Sharma, A. (1991) Manganese in cell metabolism of higher plants. Bot. Rev. 57, 117–149.

    Google Scholar 

  • Nakazawa, R., Ozawa, T., Naito, T., Yano, Y., and Takenaga, H. (2000) Interactions between cadmium and nickel in the growth and heavy metal uptake in cultivated tobacco cells. Man Environ. 26, 124–129.

    Google Scholar 

  • Obata, H., and Inoue, N. (1996) Effects of cadmium on plasma membrane ATPase from plant roots differing in tolerance to cadmium. Soil Sci. Plant Nutr. 42, 361–366.

    CAS  Google Scholar 

  • Ouzounidou, G. (1995) Cu-ions mediated changes in growth, chlorophyll and other ion contents in a Cu-tolerant Koeleria splendens. Biol. Plant. 37, 71–78.

    CAS  Google Scholar 

  • Palit, S., Sharma, A., and Talukder, G. (1994) Effect of cobalt on plants. Bot. Rev. 60, 149–181.

    Google Scholar 

  • Pich, A., and Scholz, G. (1996) Translocation of copper and other micronutrients in tomato plants (Lycopersicon esculentum Mill.): nicotianamine-stimulated copper transport in the xylem. J. Exp. Bot. 47, 41–47.

    CAS  Google Scholar 

  • Prasad, M.N.V. (1997) Trace metals. In Plant Ecophysiology. Ed. MNV Prasad, John Wiley and Sons Inc., New York, 207–249.

    Google Scholar 

  • Puckett, K.J. (1976) The effects of heavy metals on some aspects of lichen physiology. Can. J Bot. 54, 2695–2703.

    CAS  Google Scholar 

  • Rachlin, J.W., Jensen, T.E., Baxter. M., and Jani, V. (1982) Utilization of morphometric analysis in evaluating response of Plectonema boryanum (Cyanophyceae) to exposure to eight heavy metals. Arch. Environ. Contam. Toxicol. 11, 323–333.

    CAS  Google Scholar 

  • Rachlin, J.W., Jensen, T.E., and Warkentine, B. (1983) The growth response of the diatom Navicula inverta to selected concentrations of the netals: cadmium, copper, lead and zinc. Bull. Torr. Bot. Club 110, 217–223.

    CAS  Google Scholar 

  • Rachlin, J.W., and Grosso, A. (1993) The growth response of the green alga Chlorella vulgaris to combined divalent cation exposure. Arch. Environ. Contam. Toxicol. 24, 16–20.

    PubMed  CAS  Google Scholar 

  • Reboredo, F. (1994) Interaction between copper and zinc and their uptake by Halimione portulacoides (L.) Aellen. Bull. Environ. Contam. Toxicol. 52, 598–605.

    CAS  Google Scholar 

  • Reboredo, F., and Henriques, F. (1991) Some observations on the leaf ultrastructure of Halimione portulacoides (L.) Aellen grown in a medium containing copper. J. Plant Physiol. 137, 717–722.

    CAS  Google Scholar 

  • Robson, A.D., and Pitman, M.G. (1983) Interactions between nutrients in higher plants In Encyclopedia of Plant Physiology, Eds. A Läuchli and RL Bieleski, Springer Verlag, Berlin-Heidelberg-New York-Tokyo, Vol. 15A, 147–180.

    Google Scholar 

  • Ros, R., Morales, A., Segura, J., and Picazo, I. (1992) In vivo and in vitro effects of nickel and cadmium on the plasmalemma ATPase from rice (Oryza sativa L.) shoots and roots. Plant Sci. 83, 199–202.

    Google Scholar 

  • Rosen, J.A., Pike, C.S., and Golden, M.L. (1977) Zinc, iron, and chlorophyll metabolism in zinc-toxic corn. Plant Physiol. 59, 1085–1087.

    PubMed  CAS  Google Scholar 

  • Rosko, J.J., and Rachlin, J.W. (1975) The effect of copper, zinc, cobalt and manganese on the growth of the marine diatom Nitzschia closterium. Bull. Torr. Bot. Club 102, 100–106.

    CAS  Google Scholar 

  • Rosko, J.J., and Rachlin, J.W. (1977) The effect of cadmium, copper, mercury, zinc and lead on cell division, growth, and chlorophyll a content of the chlorophyte Chlorella vulgaris. Bull. Torr. Bot. Club 104, 226–233.

    CAS  Google Scholar 

  • Römheld, V. (1987) Different strategies of iron acquisition in higher plants. Physiol. Plant. 70, 231–234.

    Google Scholar 

  • Sadana, U.S., and Bijah, S. (1987)Effect of zinc application on yield and cadmium content of spinach (Spinacia oleracea L.) grown in cadmium polluted soil. Ann. Bot. 3, 59–60.

    Google Scholar 

  • Siedlecka, A. (1995) Some aspects of interactions between heavy metals and plant mineral nutrients, Acta Soc. Bot. Pol. 64, 265–272.

    CAS  Google Scholar 

  • Siedlecka, A., and Baszynski, T. (1993) Inhibition of electron flow around photosystem I in chloroplasts of Cd-treated maize plants is due to Cd-induced iron deficiency. Physiol. Plant. 83, 199–202.

    Google Scholar 

  • Siedlecka, A., and Krupa, Z. (1996a) Interaction between cadmium and iron. Accumulation and distribution of metals and changes in growth parameters of Phaseolus vulgaris L. seedlings. Acta Soc. Bot. Pol. 66, 1–6.

    Google Scholar 

  • Siedlecka, A., and Krupa, Z. (1996b) Interaction between cadmium and iron and its effects on photosynthetic capacity of primary leaves of Phaseolus vulgaris. Plant Physiol. Biochem. 34, 833–842.

    CAS  Google Scholar 

  • Siedlecka, A., Krupa, Z., Samuelsson, G., Öquist, G., and Gardeström, P. (1997) Primary carbon metabolism in Phaseolus vlgaris plants under Cd/Fe interaction. Plant Physiol. Biochem. 35, 951–957.

    CAS  Google Scholar 

  • Siedlecka, A., and Krupa, Z. (1999) Cd/Fe interaction in higher plants–its consequences for the photosynthetic apparatus. Photosynthetica 36, 321–331.

    CAS  Google Scholar 

  • Sivak, M.N., and Walker, D.A. (1986) Photosynthesis in vivo can be limited by phosphate supply. New Phytol. 102, 499–512.

    CAS  Google Scholar 

  • Schmidt, W. (1996) Influence of chromium (III) on root-associated Fe (III) reductase in Plantago lanceolata L. J. Exp. Bot. 47, 805–810.

    CAS  Google Scholar 

  • Schmidt, W., Bartels, M., Tittel, J., and Fühner, C. (1997) Physiological effects of copper on iron aquisition processes in plantago. New Phytol. 135, 659–666.

    CAS  Google Scholar 

  • Scholz, G., and Stephan, U.W. (1990) Nicotianamine concentration in iron sufficient and iron deficient sunflower and barley roots. J Plant Physiol. 136, 631–634.

    Google Scholar 

  • Skórzynska-Polit, E., Tukendorf, A., Selstam, E., and Baszynski, T. (1998) Calcium modifies Cd effect on runner bean plants. Environ. Exp. Bot. 40, 275–286.

    Google Scholar 

  • Smeyers-Verbeke, J., De Graev, M., Franois, M., De Jaegere, R., and Massart, D.L. (1978) Cd uptake by intact wheat plants. Plant Cell Environ. 1, 291–296.

    Google Scholar 

  • Symeonidis, L., and Karataglis, S. (1992) Interactive effects of cadmium, lead and zinc on root growth of two metal tolerant genotypes of Holcus lanatus L. Biometals 5, 173–178.

    CAS  Google Scholar 

  • Tanaka, A., and Navasero, S.A. (1966) Interaction between iron and manganese in rice plants. Soil Sci. Plant Nutr. 12, 29–33.

    Google Scholar 

  • Tanaka, A., Loe, R., and Navasero, S.A. (1966) Some mechanisms involved in the development of iron toxicity symptoms in the rice plants. Soil Sci. Plant Nutr. 12, 32–38.

    Google Scholar 

  • Taylor, G.J. (1989) Multiple metal stress in Triticum aestivum. Differentiation between additive, multiplicative, antagonistic, and synergistic effects. Can. J. Bot. 67, 2272–2276.

    CAS  Google Scholar 

  • Taylor, G.J., and Stadt, K.J. (1990) Interactive effects of cadmium, copper, manganese, nickel and zinc on root growth of wheat (Triticum aestivum) in solution In Plant Nutrition–Physiology and Applications, Ed. ML Van Beusichem, Kluwer Academic Publishers, Dordrecht, The Netherlands, 317–322.

    Google Scholar 

  • Terry, N. (1981) Physiology of trace elements toxicity and its relation to iron stress. J. Plant Nutr. 3, 561–578.

    CAS  Google Scholar 

  • Terry, N., and Abadia, J. (1986) Function of iron in chloroplasts. J. Plant Nutr. 9, 609–646.

    CAS  Google Scholar 

  • Thys, C., Vanthome, P., Schrevens, E., and De Profi, M. (1991) Interaction of Cd with Zn, Cu, Mn and Fe for lettuce (Lactuca saliva L.) in hydroponic culture. Plant Cell Environ. 14, 713–717.

    CAS  Google Scholar 

  • Trivedi, S., and Erdei, L. (1992) Effects of cadmium and lead on the accumulation of Cat’ and K’ and on the influx and translocation of K’ in wheat of low and high K* status. Physiol. Plant. 84, 94–100.

    CAS  Google Scholar 

  • Varga, A., Zaray, G., Fodor, F., and Cieh, E. (1997) Study on interaction of iron and lead during their uptake process in wheat roots by total-reflective X-ray fluorescence spectrometry. Spectrochim. Acta Bot. 52, 1027–1032.

    Google Scholar 

  • Vazquez, M.D., Poschenrieder, C.H., and Barcel, J. (1987) Chromium VI induced structural and ultrastructural changes in bush bean plants (Phaseolus vulgaris L.). Ann. Bot. 59, 427–438.

    CAS  Google Scholar 

  • Verkleij, J.A.C., and Prast, J.E. (1989) Cadmium tolerance and co-tolerance in Silene vulgaris (Moench.) Garcke [=Silene cucubalus (L.) Wib.]. New Phytol. 111, 637–645.

    CAS  Google Scholar 

  • Verma, S.K., Singh, R.K., and Singh, S.P. (1993) Copper toxicity and phosphate utilization in the cyanobacterium Nostoc calcicola. Bull. Environ. Contam. Toxicol. 50, 192–198.

    PubMed  CAS  Google Scholar 

  • Visviki, I., and Rachlin, J.W. (1991) The toxic action and interactions of copper and cadmium to the marine alga Dunaliella minuta, in both acute and chronic exposure. Arch. Environ. Contam. Toxicol. 24, 16–20.

    Google Scholar 

  • Wallace, A. (1982) Additive, protective and synergistic effects on plants with excess trace elements. Soil Sci 133, 319–323.

    CAS  Google Scholar 

  • Wallace, A. (1989) Effects of zinc when manganese was also varied for bush beans grown in solution culture. Soil Sci. 147, 444–448.

    CAS  Google Scholar 

  • Wallace, A., and Romney, E.M. (1977) Synergistic trace metal effects in plants. Commun. Soil Sci. Plant Anal. 8, 699–707.

    CAS  Google Scholar 

  • Wallace, A., Wallace, G.A., and Cha, J.W. (1992) Some modifications in trace metal toxicities and deficiencies in plants resulting from interactions with other elements and chelating agents. J. Plant Nutr. 15, 1589–1598.

    CAS  Google Scholar 

  • Walker, W.M., Miller, J.E., and Hassett, J.J. (1987) Effect of lead and cadmium upon the calcium, magnesium, potassium and phosphorus concentration in young corn plants. Soil Sci. 124, 145–151.

    Google Scholar 

  • Williams, L.E., Pittman, J.K., and Hall, J.L. (2000) Emerging mechanisms for heavy metal transport in plants. Biochim. Biophys. Acta 1465, 104–126.

    Google Scholar 

  • Wozny A and Krzeslowska M (1993) Plant cell responses to lead. Acta Soc. Bot. Pol. 62, 101–105.

    CAS  Google Scholar 

  • Ye, Z.H., Baker, A.J.M., Wong, M.H., and Willis, A.J. (1997a) Zinc, lead and cadmium tolerance, uptake and accumulation by Typha latifolia. New Phytol. 136, 469–480.

    CAS  Google Scholar 

  • Ye, Z.H., Baker, A.J.M., Wong, M.H., and Willis, A.J. (1997b) Copper and nickel uptake, accumulation and tolerance in Typha latifolia with and without iron plaque on the root surface. New Phytol. 136, 481–488.

    CAS  Google Scholar 

  • Ye, Z.H., Baker, A.J.M., Wong, M.H. and Willis, A.J. (1998) Zinc, led and cadmium accumulation and tolerance in Typha latifolia as affected by iron plaque on the root surface. Aquat. Bot. 61, 55–67.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Krupa, Z., Siedlecka, A., Skórzynska-Polit, E., Maksymiec, W. (2002). Heavy Metal Interactions with Plant Nutrients. In: Prasad, M.N.V., Strzałka, K. (eds) Physiology and Biochemistry of Metal Toxicity and Tolerance in Plants. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2660-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2660-3_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5952-9

  • Online ISBN: 978-94-017-2660-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics