Skip to main content

Particle Segregation in Collisional Flows of Inelastic Spheres

  • Chapter

Part of the book series: NATO ASI Series ((NSSE,volume 350))

Abstract

An outline is given of the development of kinetic theories for particle segregation in collisional grain flows. Such segregation is shown to be associated with the momentum balance for each species. The simplest theory to describe segregation is based on Maxwellian velocity distributions in which the positions of centers of the colliding particles are distinguished. More refined determinations of the complete pair distribution functions result in a theory with a more complicated structure and the capacity for more accurate prediction.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. B. Savage and C. K. K. Lun. Particle size segregation in inclined chute flow of dry cohesionless granular solids. Journal of Fluid Mechanics, 189: 311–335, 1988.

    Article  ADS  Google Scholar 

  2. P. K. Haff and B. T. Werner. Computer simulation of the mechanical sorting of grains. Powder Technology, 48: 239–245, 1986.

    Article  Google Scholar 

  3. A. Rosato, K. J. Strandburg, F. Prinz, and R. H. Swendsen. Monte Carlo simulation of particulate matter segregation. Powder Technology, 49: 59–69, 1986.

    Article  Google Scholar 

  4. A. Rosato, K. J. Strandburg, F. Prinz, and R. H. Swendsen. Why the Brazil nuts are on top: size segregation of particulate matter by shaking. Physics Review Letters, 58: 1038–1040, 1986.

    Article  MathSciNet  ADS  Google Scholar 

  5. J. B. Knight, E. E. Ehrich, V. Y. Kuperman, J. K. Flint, H. M. Jaeger, and S. R. Nagel. Experimental studies of granular convection. Physical Review E, 54: 5726–5738, 1996.

    Article  ADS  Google Scholar 

  6. D. M. Hanes, J. T. Jenkins, and R. M. Richman. The thickness of steady plane shear flows of smooth, inelastic circular disks driven by identical boundaries. Journal of Applied Mechanics, 55: 969–974, 1989.

    Article  ADS  Google Scholar 

  7. J. T. Jenkins and F. Mancini. 1987 balance laws and constitutive relations for plane flows of a dense, binary mixture of smooth, nearly elastic disks. Journal of Applied Mechanics, 109: 27–34, 1987.

    Article  ADS  Google Scholar 

  8. S. Chapman and T. G. Cowling. The Mathematical Theory of Nonuniform Gases. Cambridge University Press: Cambridge, 3rd edition, 1970.

    Google Scholar 

  9. G. A. Mansoori, N. F. Carnahan, K. E. Starling, and T. W. Leland, Jr. Equilibrium thermodynamic properties of a mixture of hard spheres. Journal of Chemical, Physics54:1523–1525, 1971.

    Article  ADS  Google Scholar 

  10. M. K. Tham and K. E. Gubbins. Kinetic theory of multicomponent dense fluid mixtures of rigid spheres. Journal of Chemical Physics, 55: 268–279, 1971.

    Article  ADS  Google Scholar 

  11. L. Barajas, L. S. Garcia-Cohen, and E. Pina. On the Enskog-Thorne theory for a binary mixture of dissimilar rigid spheres. Journal of Statistical Physics, 7: 161–183, 1973.

    Article  ADS  Google Scholar 

  12. H. Van Beijeren and M. H. Ernst. The modified Enskog equation. Physica, 68: 437–456, 1973.

    Article  ADS  Google Scholar 

  13. M. López de Haro, E. G. D. Cohen, and J. M. Kincaid. The Enskog theory for multicomponent mixtures. I. Linear transport theory. Journal of Chemical Physics, 78: 2746–2759, 1983.

    Article  ADS  Google Scholar 

  14. J. M. Kincaid, M. López de Haro, and E. G. D. Cohen. The Enskog theory for multicomponent mixtures. II. Mutual diffusion. Journal of Chemical Physics, 79: 4509–4521, 1983.

    Article  ADS  Google Scholar 

  15. M. López de Haro and E. G. D. Cohen. The Enskog theory for multicomponent mixtures. III. Transport properties in dense binary mixtures with one tracer component. Journal of Chemical Physics, 80: 408–415, 1984.

    Article  ADS  Google Scholar 

  16. J. M. Kincaid, E. G. D. Cohen, and M. López de Haro. The Enskog theory for multi-component mixtures. II. Thermal dffusion. Journal of Chemical Physics, 86: 963–975, 1987.

    Article  ADS  Google Scholar 

  17. J. T. Jenkins and F. Mancini. Kinetic theory for smooth, nearly elastic spheres. Physics of Fluids, A1: 2050–2057, 1989.

    MathSciNet  ADS  MATH  Google Scholar 

  18. B. O. Arnarson and J. T. Willits. Thermal diffusion in binary mixtures of smooth, nearly elastic spheres in the presence and absence of gravity. Physics of Fluids,1997 (Under review).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jenkins, J.T. (1998). Particle Segregation in Collisional Flows of Inelastic Spheres. In: Herrmann, H.J., Hovi, JP., Luding, S. (eds) Physics of Dry Granular Media. NATO ASI Series, vol 350. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2653-5_49

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2653-5_49

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5039-7

  • Online ISBN: 978-94-017-2653-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics