Skip to main content

Kinetics and Dynamics of Rapid Granular Flows

  • Chapter
Physics of Dry Granular Media

Part of the book series: NATO ASI Series ((NSSE,volume 350))

Abstract

The dissipative nature of the interactions in granular systems has far reaching consequences: (i) There is an inherent lack of scale separation which is independent of the size of the system (in addition to the ‘practical’ scale separation due to the macroscopic sizes of typical grains); (ii) Both ‘geometrical’ (e.g. clusters, arches etc.) and ‘dynamical’ (e.g. stress chains) microstructures are of key importance in granular statics and dynamics; (iii) Many (rapid) flows are ‘supersonic’; (iv) Constitutive relations may be scale dependent. In many ways these systems are mesoscopic rather than macroscopic in nature. In addition, granular systems exhibit multi-stability and they are almost always in metastable states. Strongly excited granular matter can be entirely fluidized; this state is coined rapid granular flow and its dynamics is partially analogous to that of a classical gas. A perturbative solution of the pertinent inelastic Boltzmann equation yields constitutive relations which are different from those previously derived and this difference is related to a (previously unappreciated) quasi-microscopic time scale which characterizes the decay rate of the temperature. The normal stress differences (as well as the ‘anisotropic temperature’) are shown to result from Burnett corrections. The continuum equations of motion can be used to explain phenomena such as clustering and layering in granular systems and, to some extent, even the collapse phenomenon. The latter, unlike clustering, is not of hydrodynamic origin and the difference is explained. It is concluded that while statistical mechanical methods can be useful in the realm of granular materials, they should be applied with utmost care; in particular the above fundamental differences between molecular and granular systems must always be borne in mind.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.K. Haff, “Grain Flow as a Fluid Mechanical Phenomenon”, J. Fluid Mech., 134, 401–498 (1983).

    Article  ADS  MATH  Google Scholar 

  2. C.S. Campbell, “Rapid Granular Flows”, Ann. Revs. Fluid Mech., 22, 57–92 (1990).

    Article  ADS  Google Scholar 

  3. C.K.K. Lun, S.B. Savage, D.J. Jeffrey, and N. Chepurnyi. “Kinetic Theories of Granular Flow: Inelastic Particles in a Couette Flow and lightly Inelastic Particles in a General Flow Field”, J. Fluid Mech., 140, 223–256 (1984).

    Article  ADS  MATH  Google Scholar 

  4. J.T. Jenkins and M.W. Richman. “Grad’s 13-Moment System for a Dense Gas of Inelastic Spheres”, Arch. Rat. Mech. Annal., 87, 355–377 (1985).

    MathSciNet  MATH  Google Scholar 

  5. J.T. Jenkins and M.W. Richman. “Kinetic Theory for Plane Flows of a Dense Gas of Identical, Rough, Inelastic, Circular Disks”, Phys. Fluids, 28, 3485–3494 (1985).

    Article  ADS  MATH  Google Scholar 

  6. J.T. Jenkins and M.W. Richman, “Plane Simple Shear of Smooth Inelastic Circular Disks: the Anisotropy of the Second Moment in the Dilute and Dense Limit”, J. Fluid. Mech., 192, 313–328 (1988).

    Article  ADS  MATH  Google Scholar 

  7. E.J. Boyle M. Massoudi, “A Theory for Granular Materials Exhibiting Normal Stress Effects Based on Enskog’s Dense Gas Theory”, Int. J. Engng. Sci., 28 (12), 1261–1275 (1990).

    Article  MATH  Google Scholar 

  8. C.K.K. Lun, “Kinetic Theory for Granular Flow of Dense, Slightly Inelastic, Slightly Rough Spheres”, J. Fluid Mech., 223, 539–559 (1991).

    Google Scholar 

  9. A. Goldshtein and M. Shapiro, “Mechanics of Collisional Motion of Granular Materials, Part I: General Hydrodynamic Equations”, J. Fluid Mech., 282, 75–114 (1995).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. H. Grad, “On the Kinetic Theory of Rarefied Gases”, Comm. Pure and Appl. Math., 2, 331–407 (1949).

    Article  MathSciNet  MATH  Google Scholar 

  11. M.K. Kogan, Rarefied Gas Dynamics, Plenum Press, New-York, 1969.

    Google Scholar 

  12. S. Chapman and T.G. Cowling, The Mathematical Theory of Nonuniform Gases, Cambridge University Press, Cambridge, UK, 1970.

    Google Scholar 

  13. S. Harris, Introduction to the Theory of the Boltzmann Equation, Holt, Reinhart and Winston, N.Y., 1971.

    Google Scholar 

  14. C. Cercignani, Theory and Application of the Boltzmann equation Scottish Acad. Press, Edinburgh and London. 1975.

    Google Scholar 

  15. I. Goldhirsch and N. Sela, “Origin of Normal Stress Differences in Rapid Granular Flows”, Phys. Rev. E54 (4), 4458–4461 (1996).

    ADS  Google Scholar 

  16. N. Sela, I. Goldhirsch and S.H. Noskowicz, “Kinetic Theoretical Study of a Simply Sheared Two Dimensional Granular Gas to Burnett order”, Phys. Fluids,8(9), 23372353 (1996).

    Google Scholar 

  17. N. Sela and I. Goldhirsch, “Hydrodynamic Equations for Rapid Flows of Smooth Inelastic Systems, to Burnett Order”, J. Fluid Mech.,in press (1998).

    Google Scholar 

  18. M-L. Tan and I. Goldhirsch, “Subsonic and Supersonic Regions in Rapid Granular Flows”, preprint (1997).

    Google Scholar 

  19. B.J. Glasser and I. Goldhirsch, “Scale dependence, Correlations and Fluctuations in Rapid Granular Flows”, preprint (1997).

    Google Scholar 

  20. S.H. Noskowicz, I. Goldhirsch and O. Bar-Lev, “Kinetic Theory of Granular Gases: the Isotropic and Homogeneous case”, preprint (1997).

    Google Scholar 

  21. K. Huang, Statistical Mechanics, John Wiley, N.Y., 1963.

    Google Scholar 

  22. F. Reif, Statistical and Thermal Physics, McGraw-Hill, N.Y., 1965.

    Google Scholar 

  23. O.R. Walton and R.L. Braun, “Viscosity, Granular Temperature and Stress Calculations of Shearing Assemblies of Inelastic Frictional Disks”, J. Rheol., 30, 949–980 (1986).

    Article  ADS  Google Scholar 

  24. O.R. Walton and R.L. Braun, “Stress Calculations for Assemblies of Inelastic Spheres in Uniform Shear”, Acta Mech., 63 73–86 (1986).

    Article  Google Scholar 

  25. S. McNamara and W.R. Young. “Inelastic Collapse and Clumping in a One-Dimensional Granular Medium”. Phys. Fluids, A4, 496–504 (1992).

    Article  ADS  Google Scholar 

  26. S. McNamara and W.R. Young. “Kinetics of a One Dimensional Granular Medium in the Quasielastic Limit”, Phys. Fluids, A5, 34–45 (1993).

    Google Scholar 

  27. S. McNamara and W.R. Young, “Inelastic Collapse in Two Dimensions”, Phys. Rev. E50, R28 - R31 (1994).

    ADS  Google Scholar 

  28. I. Goldhirsch and G. Zanetti. “Clustering Instability in Dissipative Gases”, Phys. Rev. Lett. 70, 1619–1662 (1993).

    Article  ADS  Google Scholar 

  29. I. Goldhirsch, M-L. Tan, and G. Zanetti. “A Molecular Dynamical Study of Granular Fluids I: The Unforced Granular Gas in Two Dimensions”, J. Sci. Comp., 8 (1), 1–40 (1993).

    Article  MATH  Google Scholar 

  30. M-L. Tan and I. Goldhirsch. “Intercluster Interactions in Rapid Granular Shear Flows”, Phys. Fluids 9 (4), 856–869 (1997).

    Article  ADS  Google Scholar 

  31. Cf. numerous papers in this Proceedings and refs. therein.

    Google Scholar 

  32. P.J. Schmid and H.K. Kytömaa, “Transient and Asymptotic Stability of Granular Shear Flow”, J. Fluid Mech., 264, 255–275 (1994).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. S.B. Savage. “Instability of an Unbounded Uniform Granular Shear Flow”, J. Fluid Mech., 241 109–123 (1992).

    Article  ADS  MATH  Google Scholar 

  34. M. Babic, “On the Stability of Rapid Granular Flows”, J. Fluid Mech., 254, 127–150 (1993).

    Google Scholar 

  35. N. Sela and I. Goldhirsch. “Hydrodynamics of a One Dimensional Granular Medium”, Phys. Fluids, 7 (3), 507–525, (1995).

    Article  ADS  MATH  Google Scholar 

  36. N. Sela and I. Goldhirsch, “Boundary Conditions for Dissipative and Nondissipative Gases”, in preparation (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Goldhirsch, I. (1998). Kinetics and Dynamics of Rapid Granular Flows. In: Herrmann, H.J., Hovi, JP., Luding, S. (eds) Physics of Dry Granular Media. NATO ASI Series, vol 350. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2653-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2653-5_27

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5039-7

  • Online ISBN: 978-94-017-2653-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics