Photosensitization and Photocatalysis Using Inorganic and Organometallic Compounds pp 217-245 | Cite as
Photocatalysis: Reduction of Carbon Dioxide and Water-Gas-Shift Reaction Photocatalyzed by 2,2′-Bipyridine or 1,10-Phenanthroline Cobalt(II), Ruthenium(II), Rhenium(I) and Iridium(III) Complexes
- 11 Citations
- 296 Downloads
Abstract
Photochemical activation of molecules is preferable to thermal activation because milder conditions are required and therefore undesirable side reactions are minimized. Photochemical conversion of water, carbon dioxide and carbon monoxide requires the development of catalytic systems coupled to light absorption and there is much interest in processes which would perform these reactions under mild conditions. The development of such systems is of special interest from at least three points of view : i) developing new catalysts for the activation of water, carbon dioxide and carbon monoxide; ii) devising means for the conversion and storage of solar energy as chemical energy by production of fuels and valuable organic raw materials; iii) setting up models of natural photosynthesis (photoinduced splitting of water and reduction of carbon dioxide are the basic reactions involved in natural photosynthesis).
Keywords
Quantum Yield Catalytic System Nucleophilic Attack Catalytic Cycle Phosphine ComplexPreview
Unable to display preview. Download preview PDF.
References
- 1.Photochemical Conversion and Storage of Solar Energy (J.S. Connolly ed.), Academic Press, New York (1981)Google Scholar
- 2.Photogeneration of Hydrogen (A. Harriman and M.A. West eds.), Academic Press, London (1982)Google Scholar
- 3.OECD-IEA Expert-Seminar on Energy Technologies for Reducing Emissions of Green House Gases“, Paris (1989)Google Scholar
- 4.R.M. Lainey and E.J. Crawford, J. Mol. Catal., 44, 357 (1988)CrossRefGoogle Scholar
- 5.Organic and Bioorganic Chemistry of Carbon Dioxide (S. Inoue and N. Yamazaki eds.), Halsted Press, New York (1982)Google Scholar
- 6.Carbon Dioxide as a Source of Carbon: Biochemical Uses (M. Aresta and G. Forti eds.), NATO ASI Series C, 206 (1987)Google Scholar
- 7.Enzymatic and Model Carboxylation and Reduction Reactions for Carbon Dioxide Utilization“ (M. Aresta and J.V. Schloss eds.), NATO ASI Series C, 304 (1990)Google Scholar
- 8.B.P. Sullivan, M.R.M. Bruce, T.R. OToole, C.M. Bollinger, E. Megehee, H. Thorp and T.J. Meyer in Catalytic Activation of Carbon Dioxide (M.W. Ayers ed.), ACS Symposium Series, vol. 363, Chapter 6, 52; American Chemical Society, Washington, D.C. (1988)Google Scholar
- 9.T. Inoue, A. Fujishima, S. Konishi and K. Honda, Nature, 277, 637 (1979);CrossRefGoogle Scholar
- A. Henglein and M. Gutierrez, Ber. Bunsenges. Phys. Chem., 87, 852 (1983)CrossRefGoogle Scholar
- 10.N. Getoff, Z. Natccfosch., 18B, 169 (1963)Google Scholar
- 11.S. Tazuke and N. Kitamura, Nature, 275, 301 (1978)CrossRefGoogle Scholar
- 12. a)B. Fischer and R. Eisenberg, J. Am. Chem. Soc., 102, 7361 (1980);CrossRefGoogle Scholar
- b).J. Hawecker, J.M. Lehn and R. Ziessel, Nouv. J. Chim., 7, 271 (1983);Google Scholar
- c).A.H.A. Tinnemanns, T.P.M. Koster, D.H.M.W. Thewissen, A. Mackor, Rec. Tray. Chim. Pays-Bas, 103, 288 (1984);CrossRefGoogle Scholar
- d).M. Beley, J.P. Collin, R. Ruppert and J.P. Sauvage, J. Am. Chem. Soc., 108, 7461 (1986);CrossRefGoogle Scholar
- e).J.L. Grant, K. Goswami, L.O. Spreer, J.W. Otwos and M. Calvin, J. Chem. Soc. Dalton Trans., 2105 (1987);Google Scholar
- f).J.P. Collin, A. Jouaitti and J.P. Sauvage, lnorg. Chem., 27, 1986 (1988)CrossRefGoogle Scholar
- 13.K. Hiratsuka, K. Takahashi, H. Sasaki and S. Toshima, Chem. Lett., 1137 (1977)Google Scholar
- 14.S. Meshitsuka, M. Ichikawa and K. Tamaru, J. Chem. Soc.Chem. Comm., 158 (1974);Google Scholar
- K. Takahashi, K. Hiratsuka, H. Sasaki and S. Toshima, Chem. Lett., 305 (1979);Google Scholar
- J.Y. Becker, B. Vainas, R. Eger and L. Kaufman, J. Chem. Soc., Chem. Comm., 1471 (1985);Google Scholar
- C.M. Lieber and N.S. Lewis, J. Am. Chem. Soc., 106, 5033 (1984)CrossRefGoogle Scholar
- 15. a)Iron-sulfur clusters: M. Tezuka, T. Yajima, A. Tsuchiya, Y. Matsumoto, Y. Uchida and M. Hidai, J. Am. Chem. Soc.,104 6835 (1982);Google Scholar
- M. Nakazawa, Y. Mizobe, Y. Matsumoto, Y. Uchida, M. Tezuka and M. Hidia, Bull. Chem. Soc. Jpn., 59, 809 (1986);CrossRefGoogle Scholar
- b).Ruthenium-carbonyl clusters: B.H. Chang, J. Organomet. Chem.,291 C31 (1987)Google Scholar
- 16.S. Slater and J.H. Wagenknecht, J. Am. Chem. Soc., 106, 5367 (1984)CrossRefGoogle Scholar
- 17.D.L. Dubois and A. Miedaner, J. Am. Chem. Soc., 109, 113 (1987)CrossRefGoogle Scholar
- 18. a)J.M. Lehn and R. Ziessel, Proc. Natl. Acad. Sci. USA, 79, 701 (1982);CrossRefGoogle Scholar
- R. Ziessel, J. Hawecker and J.M. Lehn, Hely. Chim. Acta, 69, 1065 (1986);CrossRefGoogle Scholar
- b).F.R. Keene, C. Creutz and N. Sutin, Coord. Chem. Rev., 64, 247 (1985)CrossRefGoogle Scholar
- 19.J. Hawecker, J.M. Lehn and R. Ziessel, J. Chem. Soc., Chem. Comm. 536 (1983);Google Scholar
- J. Hawecker, J.M. Lehn and R. Ziessel, Hely. Chim. Acta, 69, 1990 (1986)CrossRefGoogle Scholar
- 20.B.P. Sullivan and T.J. Meyer, J. Chem. Soc. Chem. Comm., 1244 (1984);Google Scholar
- C. Kutal, M.A. Weber, G. Ferraudi and D. Geiger, Organometallics, 4, 2161 (1985);CrossRefGoogle Scholar
- B.P. Sullivan and T.J. Meyer, Organometallics, 5, 1500 (1986);CrossRefGoogle Scholar
- H. Hukkanen and T.T. Pakkanen, Inorg. Chim. Acta, 114, L43 (1986);CrossRefGoogle Scholar
- C. Kutal, A.J. Corbin and G. Ferraudi, Organometallics, 6, 553 (1987)CrossRefGoogle Scholar
- 21. a)C.M. Bollinger, B.P. Sullivan, D. Conrad, J.A. Gilbert, N. Story and T.J. Meyer, J. Chem. Soc., Chem. Comm., 796 (1985);Google Scholar
- b).C.M. Bollinger, N. Story, B.P. Sullivan and T.J. Meyer, Inorg. Chem., 27, 4582 (1988)CrossRefGoogle Scholar
- 22.J. Hawecker, J.M. Lehn and R. Ziessel, J. Chem. Soc., Chem. Comm., 56 (1985)Google Scholar
- 23. a)H. Ishida, K. Tanaka and T. Tanaka, Chem. Lett., 405 (1985) 1035 (1987); 339 (1988);Google Scholar
- b).H. Ishida, K. Tanaka and T. Tanaka, Organometallics, 6, 181 (1987) 181;CrossRefGoogle Scholar
- H. Ishida, H. Tanaka and T. Tanaka, J. Chem. Soc., Chem. Comm., 131 (1987)Google Scholar
- 24.R. Maidan and I. Willner, J. Am. Chem. Soc., 108 (1986) 8100;CrossRefGoogle Scholar
- R. Mandler and I. Willner, J. Am. Chem. Soc., 109 (1987) 7884;CrossRefGoogle Scholar
- I. Willner, R. Maidan, D. Mandler, H. Durr, G. Dörr and K. Zengerle, J. Am. Chem. Soc., 109 (1987) 6080CrossRefGoogle Scholar
- 25.M.R.M. Bruce, E. Megehee, B.P. Sullivan, H. Thorp, T.R. OToole, A. Downard and T.J. Meyer, Organometallics, 7, 238 (1988)CrossRefGoogle Scholar
- 26.R. Ziessel, Nouv. J. Chim., 7, 613 (1983)Google Scholar
- 27.W. Hieber, F. Leutert, F. Z. Anorg. Allg. Chem. 204, 145 (1934)CrossRefGoogle Scholar
- 28.W. Reppe, E. Reindl, E. Ann. Chem., 582, 120 (1953)Google Scholar
- 29. (a)R.M. Laine, R.G. Rinker, P.C. Ford, J. Am. Chem. Soc., 99, 252 (1977);CrossRefGoogle Scholar
- (b).C.H.Cheng, D.E.Hendriksen, R. Eisenberg, J. Am. Chem. Soc. 99, 2791 (1977);CrossRefGoogle Scholar
- (c).H. Kang, C.H. Mauldin, T. Cole, W. Sleeiger, K. Cann, R. Petit, J. Am. Chem. Soc., 99, 8323 (1977)CrossRefGoogle Scholar
- 30. (a)a) C. Ungermann, V. Landis, S.A. Moya, H. Cohen, H. Walker, R.G. Pearson, R.G. Rinker, P.C. Ford, J. Am. Chem. Soc., 101, 5922 (1979);Google Scholar
- (b).P.C. Ford, C. Ungermann, V. Landis, S.A. Moya, R.C. Rinker, R.M. Laine, Adv. Chem. Ser., 173, 81 (1979);CrossRefGoogle Scholar
- (c).P.C. Ford, Acc. Chem. Res., 1431(1981)Google Scholar
- 31.E.C. Baker, D.E. Hendriksen, R. Eisenberg, J. Am. Chem. Soc., 102, 1020 (1980)CrossRefGoogle Scholar
- 32. (a)T. Yoshida, T. Okano, S. Otsuka, J. Am. Chem. Soc., 102, 5966 (1980);Google Scholar
- (b).T. Yoshida, T. Okano, Y. Ueda, S. Otsuka, J. Am. Chem. Soc., 103, 3411 (1981)CrossRefGoogle Scholar
- 33.R.G. Nuzzo, D. Feitler, G. Whitesides, J. Am. Chem. Soc., 101, 3683 (1979)CrossRefGoogle Scholar
- 34. (a)J. Kaspar, R. Spogliarich, G. Mestroni, M. Graziani, J. Organomet. Chem, 208, C15 (1981);Google Scholar
- (b).K. Kaspar, R. Spogliarich, A. Cemograz, M. Grazini, J. Organomet. Chem, 255, 371 (1983)CrossRefGoogle Scholar
- 35. (a)C.P. Kubiak, R. Eisenberg, J. Am. Chem. Soc., 102, 3637 (1980);Google Scholar
- (b).C.P. Kubiak, C. Woodcock, E. Eisenberg, Inorg. Chem., 21, 2119 (1982)CrossRefGoogle Scholar
- 36.T. Yoshida, Y. Ueda, S. Otsuka, J. Am. Chem. Soc., 100, 3941 (1978)CrossRefGoogle Scholar
- 37.A.A. Frew, R.H. Hill, L. Manojilovic-Muir, K.W. Muir, R.J. Puddephatt, J. Chem. Soc., Chem. Comm. 198 (1982)Google Scholar
- 38.C.H. Cheng, R. Eisenberg, J. Am. Chem. Soc., 100, 5968 (1978)CrossRefGoogle Scholar
- 39. (a)M.S. Holt, W.L. Wilson, J.H. Nelson, Chem. Rev., 89, 11 (1989);Google Scholar
- (b).A. Spencer, In Comprehensive Coordination Chemistry; G. Wilkinson, Ed.; Pergamon: Oxford, U.K., (1987); Vol. 6 p. 292;Google Scholar
- (c).R. Eisenberg, D.E. Hendriksen, Adv. Catal. 28 (1978);Google Scholar
- (d).H.O. Clark, V.K. Jain, Coord. Chem. Rev., 55, 151 (1984)CrossRefGoogle Scholar
- 40.M. Kubota, Inorg. Chem., 29, 574 (1990)CrossRefGoogle Scholar
- 41.P. Giannocaro, G. Vasapollo, A. Sacco, J. Chem. Soc. Chem. Comm., 1136 (1980)Google Scholar
- 42. (a)R.B. King, C.C. Frazier, R.M. Hanes, A.D. King, J. Am. Chem. Soc., 100, 2925 (1978);Google Scholar
- (b).A.D. King Jr., R.B. King, D.B. Yang, J. Am. Chem. Soc., 102, 1028 (1980)CrossRefGoogle Scholar
- 43.R.G. Pearson, H. Mauermann, J. Am. Chem. Soc., 104, 500 (1982)CrossRefGoogle Scholar
- 44.A.D. King, Jr., R.B. King, D.B. Yang, J. Chem. Soc. Chem. Comm., 529 (1980)Google Scholar
- 45.A.D. King Jr., R.B. King, D.B. Yang, J. Am. Chem. Soc., 103, 2699 (1981)CrossRefGoogle Scholar
- 46. (a)D.J. Cole-Hamilton, J. Chem. Soc., Chem. Comm., 1213 (1980);Google Scholar
- (b).D. Choudhury, D.J. Cole-Hamilton, J. Chem. Soc. Dalton Trans, 1885 (1982)Google Scholar
- 47.K. Tanaka, M. Morimoto, T. Tanaka, Chem. Leu. 901 (1983)Google Scholar
- 48.H. Ishida, K. Tanaka, M. Morimoto, T. Tanaka, Organometallics, 5, 724 (1986)CrossRefGoogle Scholar
- 49.M.M. Taqui Khan, S.B. Hallagudi, S. Shukla, Angew. Chem. Int. Ed. Engl, 27, 1735 (1988)CrossRefGoogle Scholar
- 50. (a)P.A. Marmot, R.R. Ruppert, J.P. Sauvage, Nouv. J. Chim, 5, 543 (1981);Google Scholar
- (b).J.P. Collin, J.P. Sauvage, Nouv. J. Chim., 9, 395 (1985)Google Scholar
- 51. (a)S. Sato, J.M. White, J. Am. Chem. Soc., 102, 7206 (1980);Google Scholar
- (b).S. Sato, J.M. White, J. Catal., 69, 128 (1981);CrossRefGoogle Scholar
- (c).S.M. Fang, B.H. Chen, J.M. Wwhite, J. Phys. Chem, 86, 3126 (1982)CrossRefGoogle Scholar
- 52.Sh.Ch Tsai, Ch.Ch. Kao, Y.W. Chung, J. Catal., 79, 451 (1983)CrossRefGoogle Scholar
- 53.D.H.M.W. Thewissen, A.H.A. Tinnemanns, M. Euwhorst- Reinten, K. Timmer, A. Mackor, Nouv. J. Chim, 7, 73 (1983)Google Scholar
- 54.H. Kisch, W. Schlamann, Chem. Ber, 119, 3483 (1986)CrossRefGoogle Scholar
- 55.R. Ziessel, Angew. Chem. Int. Ed. Engl., 30, 844 (1991)CrossRefGoogle Scholar
- 56.J.M. Leim and R. Ziessel, Proc. Natl. Acad. Sci. USA, 79, 701 (1982)CrossRefGoogle Scholar
- 57.J. Hawecker, J.M. Lehn and R. Ziessel, Heiv. Chim. Acta, 69, 1065 (1986)CrossRefGoogle Scholar
- 58.F.R. Keene, C. Creutz and N. Sutin, Coord. Chem. Rev., 64, 247 (1985);CrossRefGoogle Scholar
- C. Creutz and N. Sutin, ibid, 64, 321 (1985)Google Scholar
- 59.J. Hawecker, J.M. Lehn and R. Ziessel, Nouv. J. Chim., 7, 271 (1983)Google Scholar
- 60.T.H. Chao and J.H. Espenson, J. Amer. Chem. Soc., 100, 129 (1978)CrossRefGoogle Scholar
- 61.J. Hawecker, J.M. Lehn and R. Ziessel, J. Chem. Soc., Chem. Comm., 56 (1985)Google Scholar
- 62.K. Kalyanasundaram, Coord. Chem. Rev., 46, 159 (1982)CrossRefGoogle Scholar
- 63.J.M. Lehn and R. Ziessel, J. Organometal. Chem., 382, 157 (1990)CrossRefGoogle Scholar
- 64.J. Van Houten and R.J. Watts, J. Am. Chem. Soc., 98, 4853 (1976);CrossRefGoogle Scholar
- J. Van Houten and R.J. Watts, Inorg. Chem. 17, 3381 (1978);CrossRefGoogle Scholar
- P.E. Hoggard and G.B. Porter, J. Am. Chem. Soc. 100, 1457 (1978);CrossRefGoogle Scholar
- M.W. Wallace, P.E. Hoggard, Inorg. Chem. 18, 2934 (1979);CrossRefGoogle Scholar
- M. Gleria, F. Minto, G. Beggiato and P. Bortulus, J. Chem. Soc. Chem. Comm., 285 (1978);Google Scholar
- B. Durham, J.M. Walsh, C.L. Carter and T.J. Meyer, Inorg. Chem. 19, 860 (1980);CrossRefGoogle Scholar
- R.F. Jones and D.J. Cole-Hamilton, Inorg. Chim. Acta, 53, L3 (1981)CrossRefGoogle Scholar
- 65.C.P. Anderson, D.J. Salmon, T.J. Meyer and R.G. Young, J. Am. Chem. Soc., 99, 1980 (1977)CrossRefGoogle Scholar
- 66.H. Ishida, K. Tanaka, M. Morimoto and T. Tanaka, Organometallics, 5, 724 (1986)CrossRefGoogle Scholar
- 67.D.C. Gross and P.C. Ford, Inorg. Chem., 21, 1702 (1982)Google Scholar
- 68.T. Yoshida, Y. Ueda, S. Otsuko, J. Am. Chem. Soc., 100, 3941 (1979)CrossRefGoogle Scholar
- 69.T.G. Appleton and M.A. Bennett, J. Organomet. Chem., 55, C88 (1973)CrossRefGoogle Scholar
- 70.J. Guilheim, C. Pascard, J.M. Lehn and R. Ziessel, J. Chem. Soc., Dalton Trans, 1449 (1988)Google Scholar
- 71.B.P. Sullivan and T.J. Meyer, Organometallics, 5, 1500 (1986)CrossRefGoogle Scholar
- 72.J. Hawecker, J.M. Lehn and R. Ziessel, J. Chem. Soc., Chem. Comm., 328 (1984)Google Scholar
- 73.R. Ziessel, J. Chem. Soc., Chem. Commun., 16 (1986)Google Scholar
- 74.M.T. Youinou and R. Ziessel, J. of Organometal. Chem., 363, 197 (1989)CrossRefGoogle Scholar
- 75.M.O. Albers, D.J. Robinson and E. Singleton, J. Organomet. Chem., 311, 207 (1986)CrossRefGoogle Scholar
- 76.U. Kölle and J. Kossakowski, J. Chem. Soc., Chem. Commun., 549 (1988)Google Scholar
- 77.M.O. Albers, D.C. Liles, D.J. Robinson and E. Singleton, J. Organomet. Chem., 323, C39 (1987)CrossRefGoogle Scholar
- 78.U. Kölle and M. Grätzel, Angew. Chem. Int. Ed. Engl., 26, 567 (1987)CrossRefGoogle Scholar
- 79.R. Ruppert, S. Herrmann and E. Steckhan, Tetrahedron Lett., 28, 6583 (1987)Google Scholar
- 80.R. Ziessel, Angew. Chem. Int. Ed. Engl., 30, 844 (1991)CrossRefGoogle Scholar
- 81.E. Steckhan, S. Herrmann, R. Ruppert, E. Dietz, M. Frede and E. Spika, Organometallics, 10, 1568 (1990)CrossRefGoogle Scholar
- 82.In general, photochemical processes are fast and therefore their activation energy cannot be high (see for instance V. Balzani, V. Carassiti, V, Photochemistry of Coordination Compounds,Academic Press, New York, 1970). If the activation energy of the photochemical step is large, the photochemical reaction would be slow and the radiation less decay would prevail, so that the quantum yield would be low. A high quantum yield (12.7%) has been measured for this system, so the hypothesis that the activation energy of the photochemical step is negligible compared to that of the thermal step seems therefore reasonable.Google Scholar
- 83.S. Oae, W. Tagaki, K. Uneyama, I. Minomido, Tetrahedron, 24, 5283 (1968)CrossRefGoogle Scholar
- 84.E. Buncel, T.K. Venkatachalam, B.C. Menon, J. Org. Chem., 49, 413 (1984)CrossRefGoogle Scholar
- 85.R. Ziessel, S. Noblat-Chardon, A. Deronzier, D. Matt, L. Toupet, F. Balgmune and D. Grandjean, Acta. Cryst., Section C. in pressGoogle Scholar
- 86.D.L. Lichtenberger, CH. Blewins and R.B. Ortega, Organometallics, 3, 1614 (1984)CrossRefGoogle Scholar
- 87.C.D. Ritchie, W.F. Sager, Prog. Org. Chem. 2, 323 (1967)CrossRefGoogle Scholar
- 88.D. Sandrini, M. Maestri and R. Ziessel, Inorg. Chim. Acta, 163, 177 (1989)CrossRefGoogle Scholar
- 89.R. Ziessel, J. Am. Chem. Soc., in press.Google Scholar