Advertisement

Photocatalysis: Reduction of Carbon Dioxide and Water-Gas-Shift Reaction Photocatalyzed by 2,2′-Bipyridine or 1,10-Phenanthroline Cobalt(II), Ruthenium(II), Rhenium(I) and Iridium(III) Complexes

  • R. Ziessel
Chapter
Part of the Catalysis by Metal Complexes book series (CMCO, volume 14)

Abstract

Photochemical activation of molecules is preferable to thermal activation because milder conditions are required and therefore undesirable side reactions are minimized. Photochemical conversion of water, carbon dioxide and carbon monoxide requires the development of catalytic systems coupled to light absorption and there is much interest in processes which would perform these reactions under mild conditions. The development of such systems is of special interest from at least three points of view : i) developing new catalysts for the activation of water, carbon dioxide and carbon monoxide; ii) devising means for the conversion and storage of solar energy as chemical energy by production of fuels and valuable organic raw materials; iii) setting up models of natural photosynthesis (photoinduced splitting of water and reduction of carbon dioxide are the basic reactions involved in natural photosynthesis).

Keywords

Quantum Yield Catalytic System Nucleophilic Attack Catalytic Cycle Phosphine Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Photochemical Conversion and Storage of Solar Energy (J.S. Connolly ed.), Academic Press, New York (1981)Google Scholar
  2. 2.
    Photogeneration of Hydrogen (A. Harriman and M.A. West eds.), Academic Press, London (1982)Google Scholar
  3. 3.
    OECD-IEA Expert-Seminar on Energy Technologies for Reducing Emissions of Green House Gases“, Paris (1989)Google Scholar
  4. 4.
    R.M. Lainey and E.J. Crawford, J. Mol. Catal., 44, 357 (1988)CrossRefGoogle Scholar
  5. 5.
    Organic and Bioorganic Chemistry of Carbon Dioxide (S. Inoue and N. Yamazaki eds.), Halsted Press, New York (1982)Google Scholar
  6. 6.
    Carbon Dioxide as a Source of Carbon: Biochemical Uses (M. Aresta and G. Forti eds.), NATO ASI Series C, 206 (1987)Google Scholar
  7. 7.
    Enzymatic and Model Carboxylation and Reduction Reactions for Carbon Dioxide Utilization“ (M. Aresta and J.V. Schloss eds.), NATO ASI Series C, 304 (1990)Google Scholar
  8. 8.
    B.P. Sullivan, M.R.M. Bruce, T.R. OToole, C.M. Bollinger, E. Megehee, H. Thorp and T.J. Meyer in Catalytic Activation of Carbon Dioxide (M.W. Ayers ed.), ACS Symposium Series, vol. 363, Chapter 6, 52; American Chemical Society, Washington, D.C. (1988)Google Scholar
  9. 9.
    T. Inoue, A. Fujishima, S. Konishi and K. Honda, Nature, 277, 637 (1979);CrossRefGoogle Scholar
  10. A. Henglein and M. Gutierrez, Ber. Bunsenges. Phys. Chem., 87, 852 (1983)CrossRefGoogle Scholar
  11. 10.
    N. Getoff, Z. Natccfosch., 18B, 169 (1963)Google Scholar
  12. 11.
    S. Tazuke and N. Kitamura, Nature, 275, 301 (1978)CrossRefGoogle Scholar
  13. 12. a)
    B. Fischer and R. Eisenberg, J. Am. Chem. Soc., 102, 7361 (1980);CrossRefGoogle Scholar
  14. b).
    J. Hawecker, J.M. Lehn and R. Ziessel, Nouv. J. Chim., 7, 271 (1983);Google Scholar
  15. c).
    A.H.A. Tinnemanns, T.P.M. Koster, D.H.M.W. Thewissen, A. Mackor, Rec. Tray. Chim. Pays-Bas, 103, 288 (1984);CrossRefGoogle Scholar
  16. d).
    M. Beley, J.P. Collin, R. Ruppert and J.P. Sauvage, J. Am. Chem. Soc., 108, 7461 (1986);CrossRefGoogle Scholar
  17. e).
    J.L. Grant, K. Goswami, L.O. Spreer, J.W. Otwos and M. Calvin, J. Chem. Soc. Dalton Trans., 2105 (1987);Google Scholar
  18. f).
    J.P. Collin, A. Jouaitti and J.P. Sauvage, lnorg. Chem., 27, 1986 (1988)CrossRefGoogle Scholar
  19. 13.
    K. Hiratsuka, K. Takahashi, H. Sasaki and S. Toshima, Chem. Lett., 1137 (1977)Google Scholar
  20. 14.
    S. Meshitsuka, M. Ichikawa and K. Tamaru, J. Chem. Soc.Chem. Comm., 158 (1974);Google Scholar
  21. K. Takahashi, K. Hiratsuka, H. Sasaki and S. Toshima, Chem. Lett., 305 (1979);Google Scholar
  22. J.Y. Becker, B. Vainas, R. Eger and L. Kaufman, J. Chem. Soc., Chem. Comm., 1471 (1985);Google Scholar
  23. C.M. Lieber and N.S. Lewis, J. Am. Chem. Soc., 106, 5033 (1984)CrossRefGoogle Scholar
  24. 15. a)
    Iron-sulfur clusters: M. Tezuka, T. Yajima, A. Tsuchiya, Y. Matsumoto, Y. Uchida and M. Hidai, J. Am. Chem. Soc.,104 6835 (1982);Google Scholar
  25. M. Nakazawa, Y. Mizobe, Y. Matsumoto, Y. Uchida, M. Tezuka and M. Hidia, Bull. Chem. Soc. Jpn., 59, 809 (1986);CrossRefGoogle Scholar
  26. b).
    Ruthenium-carbonyl clusters: B.H. Chang, J. Organomet. Chem.,291 C31 (1987)Google Scholar
  27. 16.
    S. Slater and J.H. Wagenknecht, J. Am. Chem. Soc., 106, 5367 (1984)CrossRefGoogle Scholar
  28. 17.
    D.L. Dubois and A. Miedaner, J. Am. Chem. Soc., 109, 113 (1987)CrossRefGoogle Scholar
  29. 18. a)
    J.M. Lehn and R. Ziessel, Proc. Natl. Acad. Sci. USA, 79, 701 (1982);CrossRefGoogle Scholar
  30. R. Ziessel, J. Hawecker and J.M. Lehn, Hely. Chim. Acta, 69, 1065 (1986);CrossRefGoogle Scholar
  31. b).
    F.R. Keene, C. Creutz and N. Sutin, Coord. Chem. Rev., 64, 247 (1985)CrossRefGoogle Scholar
  32. 19.
    J. Hawecker, J.M. Lehn and R. Ziessel, J. Chem. Soc., Chem. Comm. 536 (1983);Google Scholar
  33. J. Hawecker, J.M. Lehn and R. Ziessel, Hely. Chim. Acta, 69, 1990 (1986)CrossRefGoogle Scholar
  34. 20.
    B.P. Sullivan and T.J. Meyer, J. Chem. Soc. Chem. Comm., 1244 (1984);Google Scholar
  35. C. Kutal, M.A. Weber, G. Ferraudi and D. Geiger, Organometallics, 4, 2161 (1985);CrossRefGoogle Scholar
  36. B.P. Sullivan and T.J. Meyer, Organometallics, 5, 1500 (1986);CrossRefGoogle Scholar
  37. H. Hukkanen and T.T. Pakkanen, Inorg. Chim. Acta, 114, L43 (1986);CrossRefGoogle Scholar
  38. C. Kutal, A.J. Corbin and G. Ferraudi, Organometallics, 6, 553 (1987)CrossRefGoogle Scholar
  39. 21. a)
    C.M. Bollinger, B.P. Sullivan, D. Conrad, J.A. Gilbert, N. Story and T.J. Meyer, J. Chem. Soc., Chem. Comm., 796 (1985);Google Scholar
  40. b).
    C.M. Bollinger, N. Story, B.P. Sullivan and T.J. Meyer, Inorg. Chem., 27, 4582 (1988)CrossRefGoogle Scholar
  41. 22.
    J. Hawecker, J.M. Lehn and R. Ziessel, J. Chem. Soc., Chem. Comm., 56 (1985)Google Scholar
  42. 23. a)
    H. Ishida, K. Tanaka and T. Tanaka, Chem. Lett., 405 (1985) 1035 (1987); 339 (1988);Google Scholar
  43. b).
    H. Ishida, K. Tanaka and T. Tanaka, Organometallics, 6, 181 (1987) 181;CrossRefGoogle Scholar
  44. H. Ishida, H. Tanaka and T. Tanaka, J. Chem. Soc., Chem. Comm., 131 (1987)Google Scholar
  45. 24.
    R. Maidan and I. Willner, J. Am. Chem. Soc., 108 (1986) 8100;CrossRefGoogle Scholar
  46. R. Mandler and I. Willner, J. Am. Chem. Soc., 109 (1987) 7884;CrossRefGoogle Scholar
  47. I. Willner, R. Maidan, D. Mandler, H. Durr, G. Dörr and K. Zengerle, J. Am. Chem. Soc., 109 (1987) 6080CrossRefGoogle Scholar
  48. 25.
    M.R.M. Bruce, E. Megehee, B.P. Sullivan, H. Thorp, T.R. OToole, A. Downard and T.J. Meyer, Organometallics, 7, 238 (1988)CrossRefGoogle Scholar
  49. 26.
    R. Ziessel, Nouv. J. Chim., 7, 613 (1983)Google Scholar
  50. 27.
    W. Hieber, F. Leutert, F. Z. Anorg. Allg. Chem. 204, 145 (1934)CrossRefGoogle Scholar
  51. 28.
    W. Reppe, E. Reindl, E. Ann. Chem., 582, 120 (1953)Google Scholar
  52. 29. (a)
    R.M. Laine, R.G. Rinker, P.C. Ford, J. Am. Chem. Soc., 99, 252 (1977);CrossRefGoogle Scholar
  53. (b).
    C.H.Cheng, D.E.Hendriksen, R. Eisenberg, J. Am. Chem. Soc. 99, 2791 (1977);CrossRefGoogle Scholar
  54. (c).
    H. Kang, C.H. Mauldin, T. Cole, W. Sleeiger, K. Cann, R. Petit, J. Am. Chem. Soc., 99, 8323 (1977)CrossRefGoogle Scholar
  55. 30. (a)
    a) C. Ungermann, V. Landis, S.A. Moya, H. Cohen, H. Walker, R.G. Pearson, R.G. Rinker, P.C. Ford, J. Am. Chem. Soc., 101, 5922 (1979);Google Scholar
  56. (b).
    P.C. Ford, C. Ungermann, V. Landis, S.A. Moya, R.C. Rinker, R.M. Laine, Adv. Chem. Ser., 173, 81 (1979);CrossRefGoogle Scholar
  57. (c).
    P.C. Ford, Acc. Chem. Res., 1431(1981)Google Scholar
  58. 31.
    E.C. Baker, D.E. Hendriksen, R. Eisenberg, J. Am. Chem. Soc., 102, 1020 (1980)CrossRefGoogle Scholar
  59. 32. (a)
    T. Yoshida, T. Okano, S. Otsuka, J. Am. Chem. Soc., 102, 5966 (1980);Google Scholar
  60. (b).
    T. Yoshida, T. Okano, Y. Ueda, S. Otsuka, J. Am. Chem. Soc., 103, 3411 (1981)CrossRefGoogle Scholar
  61. 33.
    R.G. Nuzzo, D. Feitler, G. Whitesides, J. Am. Chem. Soc., 101, 3683 (1979)CrossRefGoogle Scholar
  62. 34. (a)
    J. Kaspar, R. Spogliarich, G. Mestroni, M. Graziani, J. Organomet. Chem, 208, C15 (1981);Google Scholar
  63. (b).
    K. Kaspar, R. Spogliarich, A. Cemograz, M. Grazini, J. Organomet. Chem, 255, 371 (1983)CrossRefGoogle Scholar
  64. 35. (a)
    C.P. Kubiak, R. Eisenberg, J. Am. Chem. Soc., 102, 3637 (1980);Google Scholar
  65. (b).
    C.P. Kubiak, C. Woodcock, E. Eisenberg, Inorg. Chem., 21, 2119 (1982)CrossRefGoogle Scholar
  66. 36.
    T. Yoshida, Y. Ueda, S. Otsuka, J. Am. Chem. Soc., 100, 3941 (1978)CrossRefGoogle Scholar
  67. 37.
    A.A. Frew, R.H. Hill, L. Manojilovic-Muir, K.W. Muir, R.J. Puddephatt, J. Chem. Soc., Chem. Comm. 198 (1982)Google Scholar
  68. 38.
    C.H. Cheng, R. Eisenberg, J. Am. Chem. Soc., 100, 5968 (1978)CrossRefGoogle Scholar
  69. 39. (a)
    M.S. Holt, W.L. Wilson, J.H. Nelson, Chem. Rev., 89, 11 (1989);Google Scholar
  70. (b).
    A. Spencer, In Comprehensive Coordination Chemistry; G. Wilkinson, Ed.; Pergamon: Oxford, U.K., (1987); Vol. 6 p. 292;Google Scholar
  71. (c).
    R. Eisenberg, D.E. Hendriksen, Adv. Catal. 28 (1978);Google Scholar
  72. (d).
    H.O. Clark, V.K. Jain, Coord. Chem. Rev., 55, 151 (1984)CrossRefGoogle Scholar
  73. 40.
    M. Kubota, Inorg. Chem., 29, 574 (1990)CrossRefGoogle Scholar
  74. 41.
    P. Giannocaro, G. Vasapollo, A. Sacco, J. Chem. Soc. Chem. Comm., 1136 (1980)Google Scholar
  75. 42. (a)
    R.B. King, C.C. Frazier, R.M. Hanes, A.D. King, J. Am. Chem. Soc., 100, 2925 (1978);Google Scholar
  76. (b).
    A.D. King Jr., R.B. King, D.B. Yang, J. Am. Chem. Soc., 102, 1028 (1980)CrossRefGoogle Scholar
  77. 43.
    R.G. Pearson, H. Mauermann, J. Am. Chem. Soc., 104, 500 (1982)CrossRefGoogle Scholar
  78. 44.
    A.D. King, Jr., R.B. King, D.B. Yang, J. Chem. Soc. Chem. Comm., 529 (1980)Google Scholar
  79. 45.
    A.D. King Jr., R.B. King, D.B. Yang, J. Am. Chem. Soc., 103, 2699 (1981)CrossRefGoogle Scholar
  80. 46. (a)
    D.J. Cole-Hamilton, J. Chem. Soc., Chem. Comm., 1213 (1980);Google Scholar
  81. (b).
    D. Choudhury, D.J. Cole-Hamilton, J. Chem. Soc. Dalton Trans, 1885 (1982)Google Scholar
  82. 47.
    K. Tanaka, M. Morimoto, T. Tanaka, Chem. Leu. 901 (1983)Google Scholar
  83. 48.
    H. Ishida, K. Tanaka, M. Morimoto, T. Tanaka, Organometallics, 5, 724 (1986)CrossRefGoogle Scholar
  84. 49.
    M.M. Taqui Khan, S.B. Hallagudi, S. Shukla, Angew. Chem. Int. Ed. Engl, 27, 1735 (1988)CrossRefGoogle Scholar
  85. 50. (a)
    P.A. Marmot, R.R. Ruppert, J.P. Sauvage, Nouv. J. Chim, 5, 543 (1981);Google Scholar
  86. (b).
    J.P. Collin, J.P. Sauvage, Nouv. J. Chim., 9, 395 (1985)Google Scholar
  87. 51. (a)
    S. Sato, J.M. White, J. Am. Chem. Soc., 102, 7206 (1980);Google Scholar
  88. (b).
    S. Sato, J.M. White, J. Catal., 69, 128 (1981);CrossRefGoogle Scholar
  89. (c).
    S.M. Fang, B.H. Chen, J.M. Wwhite, J. Phys. Chem, 86, 3126 (1982)CrossRefGoogle Scholar
  90. 52.
    Sh.Ch Tsai, Ch.Ch. Kao, Y.W. Chung, J. Catal., 79, 451 (1983)CrossRefGoogle Scholar
  91. 53.
    D.H.M.W. Thewissen, A.H.A. Tinnemanns, M. Euwhorst- Reinten, K. Timmer, A. Mackor, Nouv. J. Chim, 7, 73 (1983)Google Scholar
  92. 54.
    H. Kisch, W. Schlamann, Chem. Ber, 119, 3483 (1986)CrossRefGoogle Scholar
  93. 55.
    R. Ziessel, Angew. Chem. Int. Ed. Engl., 30, 844 (1991)CrossRefGoogle Scholar
  94. 56.
    J.M. Leim and R. Ziessel, Proc. Natl. Acad. Sci. USA, 79, 701 (1982)CrossRefGoogle Scholar
  95. 57.
    J. Hawecker, J.M. Lehn and R. Ziessel, Heiv. Chim. Acta, 69, 1065 (1986)CrossRefGoogle Scholar
  96. 58.
    F.R. Keene, C. Creutz and N. Sutin, Coord. Chem. Rev., 64, 247 (1985);CrossRefGoogle Scholar
  97. C. Creutz and N. Sutin, ibid, 64, 321 (1985)Google Scholar
  98. 59.
    J. Hawecker, J.M. Lehn and R. Ziessel, Nouv. J. Chim., 7, 271 (1983)Google Scholar
  99. 60.
    T.H. Chao and J.H. Espenson, J. Amer. Chem. Soc., 100, 129 (1978)CrossRefGoogle Scholar
  100. 61.
    J. Hawecker, J.M. Lehn and R. Ziessel, J. Chem. Soc., Chem. Comm., 56 (1985)Google Scholar
  101. 62.
    K. Kalyanasundaram, Coord. Chem. Rev., 46, 159 (1982)CrossRefGoogle Scholar
  102. 63.
    J.M. Lehn and R. Ziessel, J. Organometal. Chem., 382, 157 (1990)CrossRefGoogle Scholar
  103. 64.
    J. Van Houten and R.J. Watts, J. Am. Chem. Soc., 98, 4853 (1976);CrossRefGoogle Scholar
  104. J. Van Houten and R.J. Watts, Inorg. Chem. 17, 3381 (1978);CrossRefGoogle Scholar
  105. P.E. Hoggard and G.B. Porter, J. Am. Chem. Soc. 100, 1457 (1978);CrossRefGoogle Scholar
  106. M.W. Wallace, P.E. Hoggard, Inorg. Chem. 18, 2934 (1979);CrossRefGoogle Scholar
  107. M. Gleria, F. Minto, G. Beggiato and P. Bortulus, J. Chem. Soc. Chem. Comm., 285 (1978);Google Scholar
  108. B. Durham, J.M. Walsh, C.L. Carter and T.J. Meyer, Inorg. Chem. 19, 860 (1980);CrossRefGoogle Scholar
  109. R.F. Jones and D.J. Cole-Hamilton, Inorg. Chim. Acta, 53, L3 (1981)CrossRefGoogle Scholar
  110. 65.
    C.P. Anderson, D.J. Salmon, T.J. Meyer and R.G. Young, J. Am. Chem. Soc., 99, 1980 (1977)CrossRefGoogle Scholar
  111. 66.
    H. Ishida, K. Tanaka, M. Morimoto and T. Tanaka, Organometallics, 5, 724 (1986)CrossRefGoogle Scholar
  112. 67.
    D.C. Gross and P.C. Ford, Inorg. Chem., 21, 1702 (1982)Google Scholar
  113. 68.
    T. Yoshida, Y. Ueda, S. Otsuko, J. Am. Chem. Soc., 100, 3941 (1979)CrossRefGoogle Scholar
  114. 69.
    T.G. Appleton and M.A. Bennett, J. Organomet. Chem., 55, C88 (1973)CrossRefGoogle Scholar
  115. 70.
    J. Guilheim, C. Pascard, J.M. Lehn and R. Ziessel, J. Chem. Soc., Dalton Trans, 1449 (1988)Google Scholar
  116. 71.
    B.P. Sullivan and T.J. Meyer, Organometallics, 5, 1500 (1986)CrossRefGoogle Scholar
  117. 72.
    J. Hawecker, J.M. Lehn and R. Ziessel, J. Chem. Soc., Chem. Comm., 328 (1984)Google Scholar
  118. 73.
    R. Ziessel, J. Chem. Soc., Chem. Commun., 16 (1986)Google Scholar
  119. 74.
    M.T. Youinou and R. Ziessel, J. of Organometal. Chem., 363, 197 (1989)CrossRefGoogle Scholar
  120. 75.
    M.O. Albers, D.J. Robinson and E. Singleton, J. Organomet. Chem., 311, 207 (1986)CrossRefGoogle Scholar
  121. 76.
    U. Kölle and J. Kossakowski, J. Chem. Soc., Chem. Commun., 549 (1988)Google Scholar
  122. 77.
    M.O. Albers, D.C. Liles, D.J. Robinson and E. Singleton, J. Organomet. Chem., 323, C39 (1987)CrossRefGoogle Scholar
  123. 78.
    U. Kölle and M. Grätzel, Angew. Chem. Int. Ed. Engl., 26, 567 (1987)CrossRefGoogle Scholar
  124. 79.
    R. Ruppert, S. Herrmann and E. Steckhan, Tetrahedron Lett., 28, 6583 (1987)Google Scholar
  125. 80.
    R. Ziessel, Angew. Chem. Int. Ed. Engl., 30, 844 (1991)CrossRefGoogle Scholar
  126. 81.
    E. Steckhan, S. Herrmann, R. Ruppert, E. Dietz, M. Frede and E. Spika, Organometallics, 10, 1568 (1990)CrossRefGoogle Scholar
  127. 82.
    In general, photochemical processes are fast and therefore their activation energy cannot be high (see for instance V. Balzani, V. Carassiti, V, Photochemistry of Coordination Compounds,Academic Press, New York, 1970). If the activation energy of the photochemical step is large, the photochemical reaction would be slow and the radiation less decay would prevail, so that the quantum yield would be low. A high quantum yield (12.7%) has been measured for this system, so the hypothesis that the activation energy of the photochemical step is negligible compared to that of the thermal step seems therefore reasonable.Google Scholar
  128. 83.
    S. Oae, W. Tagaki, K. Uneyama, I. Minomido, Tetrahedron, 24, 5283 (1968)CrossRefGoogle Scholar
  129. 84.
    E. Buncel, T.K. Venkatachalam, B.C. Menon, J. Org. Chem., 49, 413 (1984)CrossRefGoogle Scholar
  130. 85.
    R. Ziessel, S. Noblat-Chardon, A. Deronzier, D. Matt, L. Toupet, F. Balgmune and D. Grandjean, Acta. Cryst., Section C. in pressGoogle Scholar
  131. 86.
    D.L. Lichtenberger, CH. Blewins and R.B. Ortega, Organometallics, 3, 1614 (1984)CrossRefGoogle Scholar
  132. 87.
    C.D. Ritchie, W.F. Sager, Prog. Org. Chem. 2, 323 (1967)CrossRefGoogle Scholar
  133. 88.
    D. Sandrini, M. Maestri and R. Ziessel, Inorg. Chim. Acta, 163, 177 (1989)CrossRefGoogle Scholar
  134. 89.
    R. Ziessel, J. Am. Chem. Soc., in press.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1993

Authors and Affiliations

  • R. Ziessel
    • 1
  1. 1.Ecole Européenne des Hautes Etudes des Industries Chimiques de StrasbourgInstitut de Physique et de Chimie des Matériaux de StrasbourgStrasbourgFrance

Personalised recommendations