Photosensitization and Photocatalysis Using Inorganic and Organometallic Compounds pp 161-216 | Cite as
Intramolecular Energy and Electron Transfer in Polynuclear Metal Complexes
- 7 Citations
- 299 Downloads
Abstract
As indicated by their traditional name of “complexes”, coordination compounds have a composite nature. Their relevant molecular orbitals are often predominantly localized either on the metal or on the ligands, which can thus be considered as electronically independent fragments. Because of this composite nature, coordination compounds of transition metals exhibit a remarkable variety of electronically excited state types. The common classification includes metal-centered (MC), ligand-centered (LC), or charge transfer (CT) states, with the possibility of metal-to-ligand (MLCT) or ligand-to-metal (LMCT) subtypes. A given type of excited state usually gives rise to a typical spectroscopic transition and (when it occurs as the lowest excited state of the system) to a specific type of photophysical and photochemical behavior [1–5]. The possibility to play with metal and ligands in a large number of combinations provides a remarkable degree of synthetic control on excited state properties [6–13]. This flexibility can be useful, e.g., in the design of redox photosensitizers [14] for various applications, including chemical conversion of light energy [15].
Keywords
Charge Recombination Photoinduced Electron Transfer Electronic Coupling Binuclear Complex Supramolecular SystemPreview
Unable to display preview. Download preview PDF.
References
- 1.Balzani, V.; Carassiti, V. Photochemistry of coordination compounds; Academic: London, 1970.Google Scholar
- 2.Concepts of inorganic photochemistry;Adamson, A.W.; Fleischauer, P. D., Eds.; Wiley:New-York,1975.Google Scholar
- 3.Special issue of J. Chem. Educ.,60 785–887 (1983).Google Scholar
- 4.Ferraudi, G. J. Elements of inorganic photochemistry; Wiley: New York, 1988.Google Scholar
- 5.Scandola, F.; Balzani, V. In Photocatalysis; Serpone, N.; Pelizzetti, E., Eds.; Wiley: New York, 1989; p 9.Google Scholar
- 6.Juris, A.; Balzani, V.; Barigelletti, F.; Belser, P.; Von Zelewski, A. Coord. Chem. Rev., 84, 85 (1988).CrossRefGoogle Scholar
- 7.Meyer, T. J. Pure Appl. Chem., 58, 1193 (1986).CrossRefGoogle Scholar
- 8.Kober, E. M.; Marshall, J. L.; Dressick, W. J.; Sullivan, P.; Caspar, J. V.; Meyer, T. J. Inorg. Chem., 24, 2755 (1985).CrossRefGoogle Scholar
- 9.Barqawi, K. R.; Llobet, A.; Meyer, T. J. J. Am. Chem. Soc., 110, 7751 (1988).CrossRefGoogle Scholar
- 10.Indelli, M. T.; Bignozzi, C. A.; Marconi, A.; Scandola, F. J. Am. Chem. Soc., 110, 7381 (1988).CrossRefGoogle Scholar
- 11.Indelli, M. T; Scandola, F. Inorg. Chem., 29, 3056 (1990).CrossRefGoogle Scholar
- 12.Forster, L. S. Chem. Rev., 90, 331 (1990).Google Scholar
- 13.Kalyanasundaram, K. Photochemistry of Polypyridine and Porphyrin Complexes; Academic: New York, 1992.Google Scholar
- 14.Balzani, V.; Maestri, M. chapter of this volume.Google Scholar
- 15.Energy Resources through Photochemistry and Catalysis; Graetzel, M., Ed.; Academic: London, 1983.Google Scholar
- 16.Scandola, F.; Indelli, M. T.; Chiorboli, C.; and Bignozzi, C. A. Top. Curr. Chem., 158, 73 (1990).CrossRefGoogle Scholar
- 17.Balzani, V.; Scandola, F. Supramolecular Photochemistry; Horwood:Chichester, 1991; Chapters 5 and 6.Google Scholar
- 18.Lehn, J.-M. Angew. Chem. Int. Ed. Engl., 27, 89 (1988).Google Scholar
- 19.Vogltle, F. Supramolecular Chemistry; Wiley: Chichester, 1991.Google Scholar
- 20.Balzani, V.; Scandola, F. Supramolecular Photochemistry; Horwood: Chichester, 1991.Google Scholar
- 21.Supramolecular Chemistry; Balzani, V.; De Cola, L., Eds.; Kluwer: Dordrecht, 1992.Google Scholar
- 22.Lehn, J.-M. Science, 227, 849 (1985).CrossRefGoogle Scholar
- 23.Mixed Valence Compounds; Brown, D.B., Ed.; Reidel: Dordrecht, 1980.Google Scholar
- 24.Creutz, C. Prog. Inorg. Chem., 30, 1 (1983).Google Scholar
- 25.Hush, N. S. Prog. Inorg. Chem., 8, 391 (1967).Google Scholar
- 26.Oevering, H.; Verhoeven, J. W., Paddon-Row, M.N.; Warman, J. M. Tetrahed., 45, 4751 (1989).CrossRefGoogle Scholar
- 27.Hermant R. M.; Bakker, N. A. C.; Scherer, T.; Krijnen, B.; Verhoeven, J. W. J. Am. Chem. Soc., 112, 1214 (1990).CrossRefGoogle Scholar
- 28.Heitele, H.; Finckh, P.; Michel-Beyerle, M. E. Angew. Che. Int. Ed. Engl., 28, 619 (1990).Google Scholar
- 29.Wasielewski, M. R.; Minsek, D. W.; Niemczyk, M. P.; Svec, W. A.; Yang, N. C. J. Am. Chem. Soc., 112, 2823 (1990).CrossRefGoogle Scholar
- 30.Kamioka, K.; Cormier, R. A.; Lutton, T. W.; Connolly, J. S. J. Am. Chem. Soc., 114, 4414 (1992).CrossRefGoogle Scholar
- 31.Jortner, J. J. Chem. Phys., 64, 4860 (1976).Google Scholar
- 32.Ulstrup, J. Charge Transfer Processes in Condensed Media; Springer: Verlag, 1979.Google Scholar
- 33.Marcus, R. A.; Sutin, N. Biochim. Biophys. Acta, 811, 265 (1985).CrossRefGoogle Scholar
- 34.Sutin, N. Prog. Inorg. Chem., 30, 441 (1983).CrossRefGoogle Scholar
- 35.Miller J. R.; Beitz, J. V.; Huddleston R. K. J. Am. Chem. Soc., 106, 5057 (1984).CrossRefGoogle Scholar
- 36.Meyer, T. J.; Taube, H. In Comprehensive coordination Chemistry; Wilkilson, S. J.; Gillard, R. D.; McCleverty, J. A., Eds.; Pergamon Press: Oxford, 1987; Vol. 1, p 331.Google Scholar
- 37.Marcus, R. A. Annu. Rev. Phys. Chem., 15, 155 (1964).CrossRefGoogle Scholar
- 38.Closs, G. L; Miller, J. R. Science, 240, 440 (1988).CrossRefGoogle Scholar
- 39.Gould, I. R.; Moser, J. E.; Armitage, B.; Fand, S. J. Am. Chem. Soc., 111, 1917 (1989).CrossRefGoogle Scholar
- 40.Orlandi, G.; Monti, S.; Barigelletti, F.; Balzan, V. Chem. Phys., 52, 313 (1980).CrossRefGoogle Scholar
- 41.Murtaza, Z.; Zipp, A. P.; World, L.A.; Graff. D.; Jones, W. E. Jr., Bates, W. D.; Meyer T. J. J. Am. Chem. Soc., 113, 5113 (1991).CrossRefGoogle Scholar
- 42.Balzani, V.; Bolletta, F.; Scandola, F. J. Am. Chem. Soc., 102, 2152 (1980).CrossRefGoogle Scholar
- 43.Sigman, M. E.; Gloss, G. L. J. Phys. Chem., 95, 5012 (1991).CrossRefGoogle Scholar
- 44.MacQueen, D. B.; Eyler, J.R.; Schanze, K.S. J. Am. Chem. Soc., 114, 1897 (1992).CrossRefGoogle Scholar
- 45.Turco, N. J. Modern Molecular Photochemistry; Benjamin: Menlo Park, 1978.Google Scholar
- 46.Scandola, F.; Balzani, V. J. Chem. Educ., 60, 814 (1983).CrossRefGoogle Scholar
- 47.Closs, G. L.; Piotrowiak, P.; Maclnnis, J. M.; Fleming, G.R. J. Am. Chem. Soc., 110, 2652 (1988).CrossRefGoogle Scholar
- 48.Antennas and Reaction Centers in Photosynthetic bacteria; Michel-Beyerle, M.E., Ed.; Springer: Verlag, 1985.Google Scholar
- 49.The Photosynthetic Bacterial Reaction Center-Structure and Dynamics; Breton, J.; Vermeglio, H., Eds.; Plenum: New York, 1988.Google Scholar
- 50.Deisenhofer, J.; Epp, O.; Miki, K.; Huber, R.; Michel, H. J. Mol. Biol., 180, 385 (1984).CrossRefGoogle Scholar
- 51.Chang, C.-H.; Tiede, D. M.; Tang, J.; Smith, U.; Norris, J.; Schiffer, M. FEBS Lett., 205, 82 (1986).Google Scholar
- 52.Allen, J. P.; Feher, G.; Yeates, T. O.; Komiya, H.; Rees, D. S. Proc. Natl. Acad. Sci. USA, 84, 5730 (1987).CrossRefGoogle Scholar
- 53.Deisenhofer, J.; Michel H. Angew. Chem. Int. Ed. Engl., 28, 829 (1989).CrossRefGoogle Scholar
- 54.Huber, R. Angew. Chem. Int. Ed. Engl., 28, 848 (1989).CrossRefGoogle Scholar
- 55.Molecular Electronic Devices II; Carter F.L., Ed.; Dekker:New York, 1987.Google Scholar
- 56.Haddon R.C.; Lamola A. Proc. Natl. Acad. Sci. USA, 82, 1874 (1985).CrossRefGoogle Scholar
- 57.Aviram A. J. Am. Chem. Soc., 110, 5687 (1988).CrossRefGoogle Scholar
- 58.Hopfield J.J.; Onuchic J.N.; Beratan D. N. J. Phys. Chem., 93, 6350 (1989).CrossRefGoogle Scholar
- 59.Balzani V.; Moggi L.; Scandola F. In Supramolecular Photochemistry; Balzani V., Ed.; Reidel: Dordrecht, 1987; p 1.CrossRefGoogle Scholar
- 60.Balzani V.; Scandola F. Supramolecular Photochemistry, Horwood: Chichester, 1991; Chapter 12.Google Scholar
- 61.Wasielewski M. R.; Gaines III, G. L.; O’Neil, M. P.; Niemczyk M. P. In Supramolecular Chemistry; Balzani, V.; De Cola, L., Eds.; Kluwer: Dordrecht, 1992; p 201.CrossRefGoogle Scholar
- 62.Gust D.; Moore T. A. In Supramolecular Chemistry; Balzani, V.; De Cola, L., Eds.; Kluwer: Dordrecht, 1992; p 295.Google Scholar
- 63.Meyer T. J. Accounts Chem. Res., 22, 163 (1989).CrossRefGoogle Scholar
- 64.Collin, J. P.; Guillerez, S.; Sauvage, J. P.; Barigelletti, F.; De Cola, L.; Flamigni, L.; Balzani, V. Inorg. Chem., 30, 4230 (1991).CrossRefGoogle Scholar
- 65.Bignozzi, C. A.; Scandola, F. Inorg. Chem., 23, 1540 (1984).CrossRefGoogle Scholar
- 66.Bignozzi, C. A.; Roffia, S.; Scandola, F. J. Am. Chem. Soc., 107, 1644 (1985).CrossRefGoogle Scholar
- 67.Bignozzi, C. A., Paradisi, C., Roffia, S., and Scandola, F. lnorg. Chem., 27, 408 (1988).CrossRefGoogle Scholar
- 68.Roffia, S.; Paradisi, C.; Bignozzi, C. A. J. Electroanal. Chem., 200, 10 (1986).Google Scholar
- 69.Bignozzi, C. A.; Indelli, M. T.; Scandola, F. J. Am. Chem. Soc., 111, 5192 (1989).CrossRefGoogle Scholar
- 70.Bignozzi, C. A.; Roffia, S.; Chiorboli, C.; Davila, J.; Indelli, M. T.; Scandola, F. lnorg. Chem., 28, 4350 (1989).CrossRefGoogle Scholar
- 71.Bignozzi, C. A.; Argazzi, R.; Chiorboli, C.; Roffia, S.; Scandola, F. Coord. Chem. Rev., 111, 261 (1991).CrossRefGoogle Scholar
- 72.Bignozzi, C. A.; Bortolini, O.; Chiorboli, C.; Indelli, M. T.; Rampi, M. A.; Scandola, F. Inorg. Chem., 31, 172 (1992).CrossRefGoogle Scholar
- 73.Roffia, S.; Ciano, M. J. Electroanal. Chem., 77, 349 (1977).CrossRefGoogle Scholar
- 74.Bignozzi, C. A.; Argazzi, R.; Schoonover, J. R.; Gordon, K. C.; Dyer, R. B.; Scandola, F. lnorg. Chem.,(1992) in press.Google Scholar
- 75.Scandola, F. In Photochemical energy conversion; Norris, J. R. Jr. and Meisel, D., Eds.; Elsevier: New York, 1989, p 60.Google Scholar
- 76.Bignozzi, C. A.; Argazzi, R.; Chiorboli, C.; Scandola, F.; Schoonover, J. R.; Meyer T. J. manuscript in preparation.Google Scholar
- 77.Walker, G. W.; Barbara, P. F.; Doom, S. K.; Dong, Y.; Hupp, J. T. J. Phys. Chem, 95, 5712 (1991).CrossRefGoogle Scholar
- 78.Sahai, R.; Baucom, D. A.; Rillema, D. P. Inorg. Chem., 25, 2843 (1986).CrossRefGoogle Scholar
- 79.Schmehl, R. H.; Auerbarch, R. A.; Walcholtz, W.F.; Elliott, C. M.; Freitag, R. A.; Merken, J. W. Inorg. Chem., 25, 2400 (1986).CrossRefGoogle Scholar
- 80.Fume, M.; Kinoshita, S.; Kushida, T. Chem. Lett., 2355 (1987).Google Scholar
- 81.Fume, M.; Hirata, M.; Kinoshita, S.; Kushida, T.; Kamachi, M. Chem. Lett., 2065 (1990).Google Scholar
- 82.Connolly, J. S.; Bolton, J. R. In: Photoinduced electron transfer. Part D; Fox, M. A.; Chanon, M., Eds.; Elsevier: Amsterdam, 1988; p 303.Google Scholar
- 83.Indelli, M. T.; Bignozzi, C. A.; Scandola, F.; Harriman, A. manuscript in preparation.Google Scholar
- 84.Indelli, M. T.; Polo, E.; Bignozzi, C. A.; Scandola, F. J. Phys. Chem., 95, 3889 (1991).CrossRefGoogle Scholar
- 85.Forster, L. S. Chem. Rev., 90, 331 (1990).CrossRefGoogle Scholar
- 86.Bignozzi, C. A.; Scandola, F. manuscript in preparation.Google Scholar
- 87.Rampi M. A.; Scandola, F. submitted for publication.Google Scholar
- 88.Indelli, M. T.; Scandola, F. submitted for publication.Google Scholar
- 89.Chiorboli, C.; Bignozzi, C. A.: Indelli, M. T.; Rampi, M. A.; Scandola, F. Coord. Chem. Rev., 111, 267 (1991).CrossRefGoogle Scholar
- 90.Bignozzi, B.; Chiorboli, C.; Indelli, M. T.; Rampi Scandola, M. A.; Varani, G.; Scandola, F. J. Am. Chem. Soc., 118, 7872 (1986).CrossRefGoogle Scholar
- 91.Scandola, F.; Indelli, M. T. Pure Appl. Chem., 60, 973 (1988).CrossRefGoogle Scholar
- 92.Balzani, V.; Bolletta, F. J. Photochem., 17, 479 (1981).CrossRefGoogle Scholar
- 93.Amadelli, R.; Argazzi, R.; Bignozzi, C.A.; and Scandola, F. J. Am. Chem. Soc., 112, 7099 (1990).CrossRefGoogle Scholar
- 94.Bignozzi, C. A.; Argazzi, R.; Garcia, C. G.; Scandola, F.; Schoonover, J. R.; Meyer, T. J. J. Am. Chem. Soc. (1992) in press.Google Scholar
- 95.Gordon, K. C.; Dyer, R. B.; Schoonover, J. R.; Meyer, T. J.; Argazzi, R.; Bignozzi, C. A. J. Phys. Chem.,(1992) in press.Google Scholar
- 96.Gordon, K. C. manuscript in preparation.Google Scholar
- 97.Gerischer, H.; Willig, F. Topics Curr. Chem., 61, 31 (1976).CrossRefGoogle Scholar
- 98.Memming, R. Prog. Surface Sci., 17, 7 (1984).CrossRefGoogle Scholar
- 99.Gerischer, H. Ber. Bunsenges. Phys. Chem, 77, 771 (1973).Google Scholar
- 100.Desilvestro, J.; Graetzel, M.; Kavan, L.; Moser, J. J. Am. Chem. Soc., 107, 2988 (1985).CrossRefGoogle Scholar
- 101.Furlong, D.N.; Welles, D.; Sasse, W.H.F. J. Phys. Chem., 90, 1107 (1986).CrossRefGoogle Scholar
- 102.Graetzel, M. In: Photochemical energy conversion. Norris, J.R., Jr. and Meisel, D., Eds; Elsevier, 1989.Google Scholar
- 103.Vlachopoulos„N.; Liska, P.; Augustynski, J.; Graetzel, M. J. Am. Chem. Soc., 110, 1216 (1988).CrossRefGoogle Scholar
- 104.O’Regan, B.; Graetzel, M. Nature, 353, 737 (1991).CrossRefGoogle Scholar
- 105.Serroni, S.; Denti, G.; Campagna, S.; Ciano, M.; Balzani, V. J. Chem. Soc., Chem Commun., 944 (1991).Google Scholar
- 106.Serroni, S.; Denti, G.; Campagna, S.; Juris, A.; Ciano, M.; Balzani, V. Angew. Chem. Int. Ed. Engl. in press.Google Scholar
- 107.Argazzi, R.; Bignozzi, C. A., work in progress.Google Scholar